| Step | Hyp | Ref | Expression | 
						
							| 1 |  | voliunsge0lem.s |  |-  S = seq 1 ( + , G ) | 
						
							| 2 |  | voliunsge0lem.g |  |-  G = ( n e. NN |-> ( vol ` ( E ` n ) ) ) | 
						
							| 3 |  | voliunsge0lem.e |  |-  ( ph -> E : NN --> dom vol ) | 
						
							| 4 |  | voliunsge0lem.d |  |-  ( ph -> Disj_ n e. NN ( E ` n ) ) | 
						
							| 5 |  | nfv |  |-  F/ n ph | 
						
							| 6 |  | nfcv |  |-  F/_ n vol | 
						
							| 7 |  | nfiu1 |  |-  F/_ n U_ n e. NN ( E ` n ) | 
						
							| 8 | 6 7 | nffv |  |-  F/_ n ( vol ` U_ n e. NN ( E ` n ) ) | 
						
							| 9 | 8 | nfeq1 |  |-  F/ n ( vol ` U_ n e. NN ( E ` n ) ) = +oo | 
						
							| 10 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 11 |  | volf |  |-  vol : dom vol --> ( 0 [,] +oo ) | 
						
							| 12 | 11 | a1i |  |-  ( ph -> vol : dom vol --> ( 0 [,] +oo ) ) | 
						
							| 13 | 3 | ffvelcdmda |  |-  ( ( ph /\ n e. NN ) -> ( E ` n ) e. dom vol ) | 
						
							| 14 | 13 | ralrimiva |  |-  ( ph -> A. n e. NN ( E ` n ) e. dom vol ) | 
						
							| 15 |  | iunmbl |  |-  ( A. n e. NN ( E ` n ) e. dom vol -> U_ n e. NN ( E ` n ) e. dom vol ) | 
						
							| 16 | 14 15 | syl |  |-  ( ph -> U_ n e. NN ( E ` n ) e. dom vol ) | 
						
							| 17 | 12 16 | ffvelcdmd |  |-  ( ph -> ( vol ` U_ n e. NN ( E ` n ) ) e. ( 0 [,] +oo ) ) | 
						
							| 18 | 10 17 | sselid |  |-  ( ph -> ( vol ` U_ n e. NN ( E ` n ) ) e. RR* ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( vol ` U_ n e. NN ( E ` n ) ) e. RR* ) | 
						
							| 20 | 19 | 3adant3 |  |-  ( ( ph /\ n e. NN /\ ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` U_ n e. NN ( E ` n ) ) e. RR* ) | 
						
							| 21 |  | id |  |-  ( ( vol ` ( E ` n ) ) = +oo -> ( vol ` ( E ` n ) ) = +oo ) | 
						
							| 22 | 21 | eqcomd |  |-  ( ( vol ` ( E ` n ) ) = +oo -> +oo = ( vol ` ( E ` n ) ) ) | 
						
							| 23 | 22 | 3ad2ant3 |  |-  ( ( ph /\ n e. NN /\ ( vol ` ( E ` n ) ) = +oo ) -> +oo = ( vol ` ( E ` n ) ) ) | 
						
							| 24 | 16 | adantr |  |-  ( ( ph /\ n e. NN ) -> U_ n e. NN ( E ` n ) e. dom vol ) | 
						
							| 25 |  | ssiun2 |  |-  ( n e. NN -> ( E ` n ) C_ U_ n e. NN ( E ` n ) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( E ` n ) C_ U_ n e. NN ( E ` n ) ) | 
						
							| 27 |  | volss |  |-  ( ( ( E ` n ) e. dom vol /\ U_ n e. NN ( E ` n ) e. dom vol /\ ( E ` n ) C_ U_ n e. NN ( E ` n ) ) -> ( vol ` ( E ` n ) ) <_ ( vol ` U_ n e. NN ( E ` n ) ) ) | 
						
							| 28 | 13 24 26 27 | syl3anc |  |-  ( ( ph /\ n e. NN ) -> ( vol ` ( E ` n ) ) <_ ( vol ` U_ n e. NN ( E ` n ) ) ) | 
						
							| 29 | 28 | 3adant3 |  |-  ( ( ph /\ n e. NN /\ ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` ( E ` n ) ) <_ ( vol ` U_ n e. NN ( E ` n ) ) ) | 
						
							| 30 | 23 29 | eqbrtrd |  |-  ( ( ph /\ n e. NN /\ ( vol ` ( E ` n ) ) = +oo ) -> +oo <_ ( vol ` U_ n e. NN ( E ` n ) ) ) | 
						
							| 31 | 20 30 | xrgepnfd |  |-  ( ( ph /\ n e. NN /\ ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` U_ n e. NN ( E ` n ) ) = +oo ) | 
						
							| 32 | 31 | 3exp |  |-  ( ph -> ( n e. NN -> ( ( vol ` ( E ` n ) ) = +oo -> ( vol ` U_ n e. NN ( E ` n ) ) = +oo ) ) ) | 
						
							| 33 | 5 9 32 | rexlimd |  |-  ( ph -> ( E. n e. NN ( vol ` ( E ` n ) ) = +oo -> ( vol ` U_ n e. NN ( E ` n ) ) = +oo ) ) | 
						
							| 34 | 33 | imp |  |-  ( ( ph /\ E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` U_ n e. NN ( E ` n ) ) = +oo ) | 
						
							| 35 |  | nfre1 |  |-  F/ n E. n e. NN ( vol ` ( E ` n ) ) = +oo | 
						
							| 36 | 5 35 | nfan |  |-  F/ n ( ph /\ E. n e. NN ( vol ` ( E ` n ) ) = +oo ) | 
						
							| 37 |  | nnex |  |-  NN e. _V | 
						
							| 38 | 37 | a1i |  |-  ( ( ph /\ E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> NN e. _V ) | 
						
							| 39 | 11 | a1i |  |-  ( ( ph /\ n e. NN ) -> vol : dom vol --> ( 0 [,] +oo ) ) | 
						
							| 40 | 39 13 | ffvelcdmd |  |-  ( ( ph /\ n e. NN ) -> ( vol ` ( E ` n ) ) e. ( 0 [,] +oo ) ) | 
						
							| 41 | 40 | adantlr |  |-  ( ( ( ph /\ E. n e. NN ( vol ` ( E ` n ) ) = +oo ) /\ n e. NN ) -> ( vol ` ( E ` n ) ) e. ( 0 [,] +oo ) ) | 
						
							| 42 |  | simpr |  |-  ( ( ph /\ E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> E. n e. NN ( vol ` ( E ` n ) ) = +oo ) | 
						
							| 43 | 36 38 41 42 | sge0pnfmpt |  |-  ( ( ph /\ E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) = +oo ) | 
						
							| 44 | 34 43 | eqtr4d |  |-  ( ( ph /\ E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` U_ n e. NN ( E ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) ) | 
						
							| 45 |  | ralnex |  |-  ( A. n e. NN -. ( vol ` ( E ` n ) ) = +oo <-> -. E. n e. NN ( vol ` ( E ` n ) ) = +oo ) | 
						
							| 46 | 45 | biimpri |  |-  ( -. E. n e. NN ( vol ` ( E ` n ) ) = +oo -> A. n e. NN -. ( vol ` ( E ` n ) ) = +oo ) | 
						
							| 47 | 46 | adantl |  |-  ( ( ph /\ -. E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> A. n e. NN -. ( vol ` ( E ` n ) ) = +oo ) | 
						
							| 48 | 40 | adantr |  |-  ( ( ( ph /\ n e. NN ) /\ -. ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` ( E ` n ) ) e. ( 0 [,] +oo ) ) | 
						
							| 49 | 21 | necon3bi |  |-  ( -. ( vol ` ( E ` n ) ) = +oo -> ( vol ` ( E ` n ) ) =/= +oo ) | 
						
							| 50 | 49 | adantl |  |-  ( ( ( ph /\ n e. NN ) /\ -. ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` ( E ` n ) ) =/= +oo ) | 
						
							| 51 |  | ge0xrre |  |-  ( ( ( vol ` ( E ` n ) ) e. ( 0 [,] +oo ) /\ ( vol ` ( E ` n ) ) =/= +oo ) -> ( vol ` ( E ` n ) ) e. RR ) | 
						
							| 52 | 48 50 51 | syl2anc |  |-  ( ( ( ph /\ n e. NN ) /\ -. ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` ( E ` n ) ) e. RR ) | 
						
							| 53 | 52 | ex |  |-  ( ( ph /\ n e. NN ) -> ( -. ( vol ` ( E ` n ) ) = +oo -> ( vol ` ( E ` n ) ) e. RR ) ) | 
						
							| 54 |  | renepnf |  |-  ( ( vol ` ( E ` n ) ) e. RR -> ( vol ` ( E ` n ) ) =/= +oo ) | 
						
							| 55 | 54 | neneqd |  |-  ( ( vol ` ( E ` n ) ) e. RR -> -. ( vol ` ( E ` n ) ) = +oo ) | 
						
							| 56 | 55 | a1i |  |-  ( ( ph /\ n e. NN ) -> ( ( vol ` ( E ` n ) ) e. RR -> -. ( vol ` ( E ` n ) ) = +oo ) ) | 
						
							| 57 | 53 56 | impbid |  |-  ( ( ph /\ n e. NN ) -> ( -. ( vol ` ( E ` n ) ) = +oo <-> ( vol ` ( E ` n ) ) e. RR ) ) | 
						
							| 58 | 57 | ralbidva |  |-  ( ph -> ( A. n e. NN -. ( vol ` ( E ` n ) ) = +oo <-> A. n e. NN ( vol ` ( E ` n ) ) e. RR ) ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ph /\ -. E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> ( A. n e. NN -. ( vol ` ( E ` n ) ) = +oo <-> A. n e. NN ( vol ` ( E ` n ) ) e. RR ) ) | 
						
							| 60 | 47 59 | mpbid |  |-  ( ( ph /\ -. E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> A. n e. NN ( vol ` ( E ` n ) ) e. RR ) | 
						
							| 61 |  | nfra1 |  |-  F/ n A. n e. NN ( vol ` ( E ` n ) ) e. RR | 
						
							| 62 | 5 61 | nfan |  |-  F/ n ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) | 
						
							| 63 | 13 | adantlr |  |-  ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> ( E ` n ) e. dom vol ) | 
						
							| 64 |  | rspa |  |-  ( ( A. n e. NN ( vol ` ( E ` n ) ) e. RR /\ n e. NN ) -> ( vol ` ( E ` n ) ) e. RR ) | 
						
							| 65 | 64 | adantll |  |-  ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> ( vol ` ( E ` n ) ) e. RR ) | 
						
							| 66 | 63 65 | jca |  |-  ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> ( ( E ` n ) e. dom vol /\ ( vol ` ( E ` n ) ) e. RR ) ) | 
						
							| 67 | 66 | ex |  |-  ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) -> ( n e. NN -> ( ( E ` n ) e. dom vol /\ ( vol ` ( E ` n ) ) e. RR ) ) ) | 
						
							| 68 | 62 67 | ralrimi |  |-  ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) -> A. n e. NN ( ( E ` n ) e. dom vol /\ ( vol ` ( E ` n ) ) e. RR ) ) | 
						
							| 69 | 4 | adantr |  |-  ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) -> Disj_ n e. NN ( E ` n ) ) | 
						
							| 70 | 1 2 | voliun |  |-  ( ( A. n e. NN ( ( E ` n ) e. dom vol /\ ( vol ` ( E ` n ) ) e. RR ) /\ Disj_ n e. NN ( E ` n ) ) -> ( vol ` U_ n e. NN ( E ` n ) ) = sup ( ran S , RR* , < ) ) | 
						
							| 71 | 68 69 70 | syl2anc |  |-  ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) -> ( vol ` U_ n e. NN ( E ` n ) ) = sup ( ran S , RR* , < ) ) | 
						
							| 72 |  | 1zzd |  |-  ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) -> 1 e. ZZ ) | 
						
							| 73 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 74 |  | nfv |  |-  F/ n m e. NN | 
						
							| 75 | 62 74 | nfan |  |-  F/ n ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ m e. NN ) | 
						
							| 76 |  | nfv |  |-  F/ n ( vol ` ( E ` m ) ) e. ( 0 [,) +oo ) | 
						
							| 77 | 75 76 | nfim |  |-  F/ n ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ m e. NN ) -> ( vol ` ( E ` m ) ) e. ( 0 [,) +oo ) ) | 
						
							| 78 |  | eleq1w |  |-  ( n = m -> ( n e. NN <-> m e. NN ) ) | 
						
							| 79 | 78 | anbi2d |  |-  ( n = m -> ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) <-> ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ m e. NN ) ) ) | 
						
							| 80 |  | 2fveq3 |  |-  ( n = m -> ( vol ` ( E ` n ) ) = ( vol ` ( E ` m ) ) ) | 
						
							| 81 | 80 | eleq1d |  |-  ( n = m -> ( ( vol ` ( E ` n ) ) e. ( 0 [,) +oo ) <-> ( vol ` ( E ` m ) ) e. ( 0 [,) +oo ) ) ) | 
						
							| 82 | 79 81 | imbi12d |  |-  ( n = m -> ( ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> ( vol ` ( E ` n ) ) e. ( 0 [,) +oo ) ) <-> ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ m e. NN ) -> ( vol ` ( E ` m ) ) e. ( 0 [,) +oo ) ) ) ) | 
						
							| 83 |  | 0xr |  |-  0 e. RR* | 
						
							| 84 | 83 | a1i |  |-  ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> 0 e. RR* ) | 
						
							| 85 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 86 | 85 | a1i |  |-  ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> +oo e. RR* ) | 
						
							| 87 | 65 | rexrd |  |-  ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> ( vol ` ( E ` n ) ) e. RR* ) | 
						
							| 88 |  | volge0 |  |-  ( ( E ` n ) e. dom vol -> 0 <_ ( vol ` ( E ` n ) ) ) | 
						
							| 89 | 13 88 | syl |  |-  ( ( ph /\ n e. NN ) -> 0 <_ ( vol ` ( E ` n ) ) ) | 
						
							| 90 | 89 | adantlr |  |-  ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> 0 <_ ( vol ` ( E ` n ) ) ) | 
						
							| 91 | 65 | ltpnfd |  |-  ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> ( vol ` ( E ` n ) ) < +oo ) | 
						
							| 92 | 84 86 87 90 91 | elicod |  |-  ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> ( vol ` ( E ` n ) ) e. ( 0 [,) +oo ) ) | 
						
							| 93 | 77 82 92 | chvarfv |  |-  ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ m e. NN ) -> ( vol ` ( E ` m ) ) e. ( 0 [,) +oo ) ) | 
						
							| 94 | 80 | cbvmptv |  |-  ( n e. NN |-> ( vol ` ( E ` n ) ) ) = ( m e. NN |-> ( vol ` ( E ` m ) ) ) | 
						
							| 95 | 93 94 | fmptd |  |-  ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) -> ( n e. NN |-> ( vol ` ( E ` n ) ) ) : NN --> ( 0 [,) +oo ) ) | 
						
							| 96 |  | seqeq3 |  |-  ( G = ( n e. NN |-> ( vol ` ( E ` n ) ) ) -> seq 1 ( + , G ) = seq 1 ( + , ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) ) | 
						
							| 97 | 2 96 | ax-mp |  |-  seq 1 ( + , G ) = seq 1 ( + , ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) | 
						
							| 98 | 1 97 | eqtri |  |-  S = seq 1 ( + , ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) | 
						
							| 99 | 72 73 95 98 | sge0seq |  |-  ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) -> ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) = sup ( ran S , RR* , < ) ) | 
						
							| 100 | 71 99 | eqtr4d |  |-  ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) -> ( vol ` U_ n e. NN ( E ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) ) | 
						
							| 101 | 60 100 | syldan |  |-  ( ( ph /\ -. E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` U_ n e. NN ( E ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) ) | 
						
							| 102 | 44 101 | pm2.61dan |  |-  ( ph -> ( vol ` U_ n e. NN ( E ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) ) |