| Step |
Hyp |
Ref |
Expression |
| 1 |
|
voliunsge0lem.s |
|- S = seq 1 ( + , G ) |
| 2 |
|
voliunsge0lem.g |
|- G = ( n e. NN |-> ( vol ` ( E ` n ) ) ) |
| 3 |
|
voliunsge0lem.e |
|- ( ph -> E : NN --> dom vol ) |
| 4 |
|
voliunsge0lem.d |
|- ( ph -> Disj_ n e. NN ( E ` n ) ) |
| 5 |
|
nfv |
|- F/ n ph |
| 6 |
|
nfcv |
|- F/_ n vol |
| 7 |
|
nfiu1 |
|- F/_ n U_ n e. NN ( E ` n ) |
| 8 |
6 7
|
nffv |
|- F/_ n ( vol ` U_ n e. NN ( E ` n ) ) |
| 9 |
8
|
nfeq1 |
|- F/ n ( vol ` U_ n e. NN ( E ` n ) ) = +oo |
| 10 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 11 |
|
volf |
|- vol : dom vol --> ( 0 [,] +oo ) |
| 12 |
11
|
a1i |
|- ( ph -> vol : dom vol --> ( 0 [,] +oo ) ) |
| 13 |
3
|
ffvelcdmda |
|- ( ( ph /\ n e. NN ) -> ( E ` n ) e. dom vol ) |
| 14 |
13
|
ralrimiva |
|- ( ph -> A. n e. NN ( E ` n ) e. dom vol ) |
| 15 |
|
iunmbl |
|- ( A. n e. NN ( E ` n ) e. dom vol -> U_ n e. NN ( E ` n ) e. dom vol ) |
| 16 |
14 15
|
syl |
|- ( ph -> U_ n e. NN ( E ` n ) e. dom vol ) |
| 17 |
12 16
|
ffvelcdmd |
|- ( ph -> ( vol ` U_ n e. NN ( E ` n ) ) e. ( 0 [,] +oo ) ) |
| 18 |
10 17
|
sselid |
|- ( ph -> ( vol ` U_ n e. NN ( E ` n ) ) e. RR* ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( vol ` U_ n e. NN ( E ` n ) ) e. RR* ) |
| 20 |
19
|
3adant3 |
|- ( ( ph /\ n e. NN /\ ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` U_ n e. NN ( E ` n ) ) e. RR* ) |
| 21 |
|
id |
|- ( ( vol ` ( E ` n ) ) = +oo -> ( vol ` ( E ` n ) ) = +oo ) |
| 22 |
21
|
eqcomd |
|- ( ( vol ` ( E ` n ) ) = +oo -> +oo = ( vol ` ( E ` n ) ) ) |
| 23 |
22
|
3ad2ant3 |
|- ( ( ph /\ n e. NN /\ ( vol ` ( E ` n ) ) = +oo ) -> +oo = ( vol ` ( E ` n ) ) ) |
| 24 |
16
|
adantr |
|- ( ( ph /\ n e. NN ) -> U_ n e. NN ( E ` n ) e. dom vol ) |
| 25 |
|
ssiun2 |
|- ( n e. NN -> ( E ` n ) C_ U_ n e. NN ( E ` n ) ) |
| 26 |
25
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( E ` n ) C_ U_ n e. NN ( E ` n ) ) |
| 27 |
|
volss |
|- ( ( ( E ` n ) e. dom vol /\ U_ n e. NN ( E ` n ) e. dom vol /\ ( E ` n ) C_ U_ n e. NN ( E ` n ) ) -> ( vol ` ( E ` n ) ) <_ ( vol ` U_ n e. NN ( E ` n ) ) ) |
| 28 |
13 24 26 27
|
syl3anc |
|- ( ( ph /\ n e. NN ) -> ( vol ` ( E ` n ) ) <_ ( vol ` U_ n e. NN ( E ` n ) ) ) |
| 29 |
28
|
3adant3 |
|- ( ( ph /\ n e. NN /\ ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` ( E ` n ) ) <_ ( vol ` U_ n e. NN ( E ` n ) ) ) |
| 30 |
23 29
|
eqbrtrd |
|- ( ( ph /\ n e. NN /\ ( vol ` ( E ` n ) ) = +oo ) -> +oo <_ ( vol ` U_ n e. NN ( E ` n ) ) ) |
| 31 |
20 30
|
xrgepnfd |
|- ( ( ph /\ n e. NN /\ ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` U_ n e. NN ( E ` n ) ) = +oo ) |
| 32 |
31
|
3exp |
|- ( ph -> ( n e. NN -> ( ( vol ` ( E ` n ) ) = +oo -> ( vol ` U_ n e. NN ( E ` n ) ) = +oo ) ) ) |
| 33 |
5 9 32
|
rexlimd |
|- ( ph -> ( E. n e. NN ( vol ` ( E ` n ) ) = +oo -> ( vol ` U_ n e. NN ( E ` n ) ) = +oo ) ) |
| 34 |
33
|
imp |
|- ( ( ph /\ E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` U_ n e. NN ( E ` n ) ) = +oo ) |
| 35 |
|
nfre1 |
|- F/ n E. n e. NN ( vol ` ( E ` n ) ) = +oo |
| 36 |
5 35
|
nfan |
|- F/ n ( ph /\ E. n e. NN ( vol ` ( E ` n ) ) = +oo ) |
| 37 |
|
nnex |
|- NN e. _V |
| 38 |
37
|
a1i |
|- ( ( ph /\ E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> NN e. _V ) |
| 39 |
11
|
a1i |
|- ( ( ph /\ n e. NN ) -> vol : dom vol --> ( 0 [,] +oo ) ) |
| 40 |
39 13
|
ffvelcdmd |
|- ( ( ph /\ n e. NN ) -> ( vol ` ( E ` n ) ) e. ( 0 [,] +oo ) ) |
| 41 |
40
|
adantlr |
|- ( ( ( ph /\ E. n e. NN ( vol ` ( E ` n ) ) = +oo ) /\ n e. NN ) -> ( vol ` ( E ` n ) ) e. ( 0 [,] +oo ) ) |
| 42 |
|
simpr |
|- ( ( ph /\ E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> E. n e. NN ( vol ` ( E ` n ) ) = +oo ) |
| 43 |
36 38 41 42
|
sge0pnfmpt |
|- ( ( ph /\ E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) = +oo ) |
| 44 |
34 43
|
eqtr4d |
|- ( ( ph /\ E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` U_ n e. NN ( E ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) ) |
| 45 |
|
ralnex |
|- ( A. n e. NN -. ( vol ` ( E ` n ) ) = +oo <-> -. E. n e. NN ( vol ` ( E ` n ) ) = +oo ) |
| 46 |
45
|
biimpri |
|- ( -. E. n e. NN ( vol ` ( E ` n ) ) = +oo -> A. n e. NN -. ( vol ` ( E ` n ) ) = +oo ) |
| 47 |
46
|
adantl |
|- ( ( ph /\ -. E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> A. n e. NN -. ( vol ` ( E ` n ) ) = +oo ) |
| 48 |
40
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ -. ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` ( E ` n ) ) e. ( 0 [,] +oo ) ) |
| 49 |
21
|
necon3bi |
|- ( -. ( vol ` ( E ` n ) ) = +oo -> ( vol ` ( E ` n ) ) =/= +oo ) |
| 50 |
49
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ -. ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` ( E ` n ) ) =/= +oo ) |
| 51 |
|
ge0xrre |
|- ( ( ( vol ` ( E ` n ) ) e. ( 0 [,] +oo ) /\ ( vol ` ( E ` n ) ) =/= +oo ) -> ( vol ` ( E ` n ) ) e. RR ) |
| 52 |
48 50 51
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ -. ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` ( E ` n ) ) e. RR ) |
| 53 |
52
|
ex |
|- ( ( ph /\ n e. NN ) -> ( -. ( vol ` ( E ` n ) ) = +oo -> ( vol ` ( E ` n ) ) e. RR ) ) |
| 54 |
|
renepnf |
|- ( ( vol ` ( E ` n ) ) e. RR -> ( vol ` ( E ` n ) ) =/= +oo ) |
| 55 |
54
|
neneqd |
|- ( ( vol ` ( E ` n ) ) e. RR -> -. ( vol ` ( E ` n ) ) = +oo ) |
| 56 |
55
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( ( vol ` ( E ` n ) ) e. RR -> -. ( vol ` ( E ` n ) ) = +oo ) ) |
| 57 |
53 56
|
impbid |
|- ( ( ph /\ n e. NN ) -> ( -. ( vol ` ( E ` n ) ) = +oo <-> ( vol ` ( E ` n ) ) e. RR ) ) |
| 58 |
57
|
ralbidva |
|- ( ph -> ( A. n e. NN -. ( vol ` ( E ` n ) ) = +oo <-> A. n e. NN ( vol ` ( E ` n ) ) e. RR ) ) |
| 59 |
58
|
adantr |
|- ( ( ph /\ -. E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> ( A. n e. NN -. ( vol ` ( E ` n ) ) = +oo <-> A. n e. NN ( vol ` ( E ` n ) ) e. RR ) ) |
| 60 |
47 59
|
mpbid |
|- ( ( ph /\ -. E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> A. n e. NN ( vol ` ( E ` n ) ) e. RR ) |
| 61 |
|
nfra1 |
|- F/ n A. n e. NN ( vol ` ( E ` n ) ) e. RR |
| 62 |
5 61
|
nfan |
|- F/ n ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) |
| 63 |
13
|
adantlr |
|- ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> ( E ` n ) e. dom vol ) |
| 64 |
|
rspa |
|- ( ( A. n e. NN ( vol ` ( E ` n ) ) e. RR /\ n e. NN ) -> ( vol ` ( E ` n ) ) e. RR ) |
| 65 |
64
|
adantll |
|- ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> ( vol ` ( E ` n ) ) e. RR ) |
| 66 |
63 65
|
jca |
|- ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> ( ( E ` n ) e. dom vol /\ ( vol ` ( E ` n ) ) e. RR ) ) |
| 67 |
66
|
ex |
|- ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) -> ( n e. NN -> ( ( E ` n ) e. dom vol /\ ( vol ` ( E ` n ) ) e. RR ) ) ) |
| 68 |
62 67
|
ralrimi |
|- ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) -> A. n e. NN ( ( E ` n ) e. dom vol /\ ( vol ` ( E ` n ) ) e. RR ) ) |
| 69 |
4
|
adantr |
|- ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) -> Disj_ n e. NN ( E ` n ) ) |
| 70 |
1 2
|
voliun |
|- ( ( A. n e. NN ( ( E ` n ) e. dom vol /\ ( vol ` ( E ` n ) ) e. RR ) /\ Disj_ n e. NN ( E ` n ) ) -> ( vol ` U_ n e. NN ( E ` n ) ) = sup ( ran S , RR* , < ) ) |
| 71 |
68 69 70
|
syl2anc |
|- ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) -> ( vol ` U_ n e. NN ( E ` n ) ) = sup ( ran S , RR* , < ) ) |
| 72 |
|
1zzd |
|- ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) -> 1 e. ZZ ) |
| 73 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 74 |
|
nfv |
|- F/ n m e. NN |
| 75 |
62 74
|
nfan |
|- F/ n ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ m e. NN ) |
| 76 |
|
nfv |
|- F/ n ( vol ` ( E ` m ) ) e. ( 0 [,) +oo ) |
| 77 |
75 76
|
nfim |
|- F/ n ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ m e. NN ) -> ( vol ` ( E ` m ) ) e. ( 0 [,) +oo ) ) |
| 78 |
|
eleq1w |
|- ( n = m -> ( n e. NN <-> m e. NN ) ) |
| 79 |
78
|
anbi2d |
|- ( n = m -> ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) <-> ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ m e. NN ) ) ) |
| 80 |
|
2fveq3 |
|- ( n = m -> ( vol ` ( E ` n ) ) = ( vol ` ( E ` m ) ) ) |
| 81 |
80
|
eleq1d |
|- ( n = m -> ( ( vol ` ( E ` n ) ) e. ( 0 [,) +oo ) <-> ( vol ` ( E ` m ) ) e. ( 0 [,) +oo ) ) ) |
| 82 |
79 81
|
imbi12d |
|- ( n = m -> ( ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> ( vol ` ( E ` n ) ) e. ( 0 [,) +oo ) ) <-> ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ m e. NN ) -> ( vol ` ( E ` m ) ) e. ( 0 [,) +oo ) ) ) ) |
| 83 |
|
0xr |
|- 0 e. RR* |
| 84 |
83
|
a1i |
|- ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> 0 e. RR* ) |
| 85 |
|
pnfxr |
|- +oo e. RR* |
| 86 |
85
|
a1i |
|- ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> +oo e. RR* ) |
| 87 |
65
|
rexrd |
|- ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> ( vol ` ( E ` n ) ) e. RR* ) |
| 88 |
|
volge0 |
|- ( ( E ` n ) e. dom vol -> 0 <_ ( vol ` ( E ` n ) ) ) |
| 89 |
13 88
|
syl |
|- ( ( ph /\ n e. NN ) -> 0 <_ ( vol ` ( E ` n ) ) ) |
| 90 |
89
|
adantlr |
|- ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> 0 <_ ( vol ` ( E ` n ) ) ) |
| 91 |
65
|
ltpnfd |
|- ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> ( vol ` ( E ` n ) ) < +oo ) |
| 92 |
84 86 87 90 91
|
elicod |
|- ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ n e. NN ) -> ( vol ` ( E ` n ) ) e. ( 0 [,) +oo ) ) |
| 93 |
77 82 92
|
chvarfv |
|- ( ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) /\ m e. NN ) -> ( vol ` ( E ` m ) ) e. ( 0 [,) +oo ) ) |
| 94 |
80
|
cbvmptv |
|- ( n e. NN |-> ( vol ` ( E ` n ) ) ) = ( m e. NN |-> ( vol ` ( E ` m ) ) ) |
| 95 |
93 94
|
fmptd |
|- ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) -> ( n e. NN |-> ( vol ` ( E ` n ) ) ) : NN --> ( 0 [,) +oo ) ) |
| 96 |
|
seqeq3 |
|- ( G = ( n e. NN |-> ( vol ` ( E ` n ) ) ) -> seq 1 ( + , G ) = seq 1 ( + , ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) ) |
| 97 |
2 96
|
ax-mp |
|- seq 1 ( + , G ) = seq 1 ( + , ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) |
| 98 |
1 97
|
eqtri |
|- S = seq 1 ( + , ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) |
| 99 |
72 73 95 98
|
sge0seq |
|- ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) -> ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) = sup ( ran S , RR* , < ) ) |
| 100 |
71 99
|
eqtr4d |
|- ( ( ph /\ A. n e. NN ( vol ` ( E ` n ) ) e. RR ) -> ( vol ` U_ n e. NN ( E ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) ) |
| 101 |
60 100
|
syldan |
|- ( ( ph /\ -. E. n e. NN ( vol ` ( E ` n ) ) = +oo ) -> ( vol ` U_ n e. NN ( E ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) ) |
| 102 |
44 101
|
pm2.61dan |
|- ( ph -> ( vol ` U_ n e. NN ( E ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) ) |