Metamath Proof Explorer


Theorem sge0pnfmpt

Description: If a term in the sum of nonnegative extended reals is +oo , then the value of the sum is +oo . (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses sge0pnfmpt.k
|- F/ k ph
sge0pnfmpt.a
|- ( ph -> A e. V )
sge0pnfmpt.b
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) )
sge0pnfmpt.p
|- ( ph -> E. k e. A B = +oo )
Assertion sge0pnfmpt
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) = +oo )

Proof

Step Hyp Ref Expression
1 sge0pnfmpt.k
 |-  F/ k ph
2 sge0pnfmpt.a
 |-  ( ph -> A e. V )
3 sge0pnfmpt.b
 |-  ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) )
4 sge0pnfmpt.p
 |-  ( ph -> E. k e. A B = +oo )
5 eqid
 |-  ( k e. A |-> B ) = ( k e. A |-> B )
6 1 3 5 fmptdf
 |-  ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) )
7 eqcom
 |-  ( B = +oo <-> +oo = B )
8 7 rexbii
 |-  ( E. k e. A B = +oo <-> E. k e. A +oo = B )
9 4 8 sylib
 |-  ( ph -> E. k e. A +oo = B )
10 pnfex
 |-  +oo e. _V
11 10 a1i
 |-  ( ph -> +oo e. _V )
12 5 9 11 elrnmptd
 |-  ( ph -> +oo e. ran ( k e. A |-> B ) )
13 2 6 12 sge0pnfval
 |-  ( ph -> ( sum^ ` ( k e. A |-> B ) ) = +oo )