Step |
Hyp |
Ref |
Expression |
1 |
|
sge0pnfmpt.k |
|- F/ k ph |
2 |
|
sge0pnfmpt.a |
|- ( ph -> A e. V ) |
3 |
|
sge0pnfmpt.b |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
4 |
|
sge0pnfmpt.p |
|- ( ph -> E. k e. A B = +oo ) |
5 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
6 |
1 3 5
|
fmptdf |
|- ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
7 |
|
eqcom |
|- ( B = +oo <-> +oo = B ) |
8 |
7
|
rexbii |
|- ( E. k e. A B = +oo <-> E. k e. A +oo = B ) |
9 |
4 8
|
sylib |
|- ( ph -> E. k e. A +oo = B ) |
10 |
|
pnfex |
|- +oo e. _V |
11 |
10
|
a1i |
|- ( ph -> +oo e. _V ) |
12 |
5 9 11
|
elrnmptd |
|- ( ph -> +oo e. ran ( k e. A |-> B ) ) |
13 |
2 6 12
|
sge0pnfval |
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) = +oo ) |