| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0pnfmpt.k |  |-  F/ k ph | 
						
							| 2 |  | sge0pnfmpt.a |  |-  ( ph -> A e. V ) | 
						
							| 3 |  | sge0pnfmpt.b |  |-  ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) | 
						
							| 4 |  | sge0pnfmpt.p |  |-  ( ph -> E. k e. A B = +oo ) | 
						
							| 5 |  | eqid |  |-  ( k e. A |-> B ) = ( k e. A |-> B ) | 
						
							| 6 | 1 3 5 | fmptdf |  |-  ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) | 
						
							| 7 |  | eqcom |  |-  ( B = +oo <-> +oo = B ) | 
						
							| 8 | 7 | rexbii |  |-  ( E. k e. A B = +oo <-> E. k e. A +oo = B ) | 
						
							| 9 | 4 8 | sylib |  |-  ( ph -> E. k e. A +oo = B ) | 
						
							| 10 |  | pnfex |  |-  +oo e. _V | 
						
							| 11 | 10 | a1i |  |-  ( ph -> +oo e. _V ) | 
						
							| 12 | 5 9 11 | elrnmptd |  |-  ( ph -> +oo e. ran ( k e. A |-> B ) ) | 
						
							| 13 | 2 6 12 | sge0pnfval |  |-  ( ph -> ( sum^ ` ( k e. A |-> B ) ) = +oo ) |