| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0pnfmpt.k | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | sge0pnfmpt.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | sge0pnfmpt.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ( 0 [,] +∞ ) ) | 
						
							| 4 |  | sge0pnfmpt.p | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  𝐴 𝐵  =  +∞ ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑘  ∈  𝐴  ↦  𝐵 )  =  ( 𝑘  ∈  𝐴  ↦  𝐵 ) | 
						
							| 6 | 1 3 5 | fmptdf | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 7 |  | eqcom | ⊢ ( 𝐵  =  +∞  ↔  +∞  =  𝐵 ) | 
						
							| 8 | 7 | rexbii | ⊢ ( ∃ 𝑘  ∈  𝐴 𝐵  =  +∞  ↔  ∃ 𝑘  ∈  𝐴 +∞  =  𝐵 ) | 
						
							| 9 | 4 8 | sylib | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  𝐴 +∞  =  𝐵 ) | 
						
							| 10 |  | pnfex | ⊢ +∞  ∈  V | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  +∞  ∈  V ) | 
						
							| 12 | 5 9 11 | elrnmptd | ⊢ ( 𝜑  →  +∞  ∈  ran  ( 𝑘  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 13 | 2 6 12 | sge0pnfval | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  𝐴  ↦  𝐵 ) )  =  +∞ ) |