| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0seq.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | sge0seq.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | sge0seq.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( 0 [,) +∞ ) ) | 
						
							| 4 |  | sge0seq.g | ⊢ 𝐺  =  seq 𝑀 (  +  ,  𝐹 ) | 
						
							| 5 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 6 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 7 | 5 6 | sselid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 8 |  | readdcl | ⊢ ( ( 𝑘  ∈  ℝ  ∧  𝑖  ∈  ℝ )  →  ( 𝑘  +  𝑖 )  ∈  ℝ ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℝ  ∧  𝑖  ∈  ℝ ) )  →  ( 𝑘  +  𝑖 )  ∈  ℝ ) | 
						
							| 10 | 2 1 7 9 | seqf | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 ) : 𝑍 ⟶ ℝ ) | 
						
							| 11 | 4 | a1i | ⊢ ( 𝜑  →  𝐺  =  seq 𝑀 (  +  ,  𝐹 ) ) | 
						
							| 12 | 11 | feq1d | ⊢ ( 𝜑  →  ( 𝐺 : 𝑍 ⟶ ℝ  ↔  seq 𝑀 (  +  ,  𝐹 ) : 𝑍 ⟶ ℝ ) ) | 
						
							| 13 | 10 12 | mpbird | ⊢ ( 𝜑  →  𝐺 : 𝑍 ⟶ ℝ ) | 
						
							| 14 | 13 | frnd | ⊢ ( 𝜑  →  ran  𝐺  ⊆  ℝ ) | 
						
							| 15 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℝ* ) | 
						
							| 17 | 14 16 | sstrd | ⊢ ( 𝜑  →  ran  𝐺  ⊆  ℝ* ) | 
						
							| 18 | 2 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  𝑍  ∈  V ) | 
						
							| 20 |  | icossicc | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) ) | 
						
							| 22 | 3 21 | fssd | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 23 | 19 22 | sge0xrcl | ⊢ ( 𝜑  →  ( Σ^ ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ran  𝐺 )  →  𝑧  ∈  ran  𝐺 ) | 
						
							| 25 | 13 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝑍 ) | 
						
							| 26 |  | fvelrnb | ⊢ ( 𝐺  Fn  𝑍  →  ( 𝑧  ∈  ran  𝐺  ↔  ∃ 𝑗  ∈  𝑍 ( 𝐺 ‘ 𝑗 )  =  𝑧 ) ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝜑  →  ( 𝑧  ∈  ran  𝐺  ↔  ∃ 𝑗  ∈  𝑍 ( 𝐺 ‘ 𝑗 )  =  𝑧 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ran  𝐺 )  →  ( 𝑧  ∈  ran  𝐺  ↔  ∃ 𝑗  ∈  𝑍 ( 𝐺 ‘ 𝑗 )  =  𝑧 ) ) | 
						
							| 29 | 24 28 | mpbid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ran  𝐺 )  →  ∃ 𝑗  ∈  𝑍 ( 𝐺 ‘ 𝑗 )  =  𝑧 ) | 
						
							| 30 | 20 6 | sselid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 31 |  | elfzuz | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 32 | 31 2 | eleqtrrdi | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  →  𝑘  ∈  𝑍 ) | 
						
							| 33 | 32 | ssriv | ⊢ ( 𝑀 ... 𝑗 )  ⊆  𝑍 | 
						
							| 34 | 33 | a1i | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑗 )  ⊆  𝑍 ) | 
						
							| 35 | 19 30 34 | sge0lessmpt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝐹 ‘ 𝑘 ) ) )  ≤  ( Σ^ ‘ ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 36 | 35 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  ( 𝐺 ‘ 𝑗 )  =  𝑧 )  →  ( Σ^ ‘ ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝐹 ‘ 𝑘 ) ) )  ≤  ( Σ^ ‘ ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 37 |  | fzfid | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑗 )  ∈  Fin ) | 
						
							| 38 | 32 6 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 39 | 37 38 | sge0fsummpt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝐹 ‘ 𝑘 ) ) )  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 40 | 39 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  ( 𝐺 ‘ 𝑗 )  =  𝑧 )  →  ( Σ^ ‘ ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝐹 ‘ 𝑘 ) ) )  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 41 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( 𝑀 ... 𝑗 ) )  →  𝜑 ) | 
						
							| 42 | 32 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( 𝑀 ... 𝑗 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 43 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 44 | 41 42 43 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( 𝑀 ... 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 45 | 2 | eleq2i | ⊢ ( 𝑗  ∈  𝑍  ↔  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 46 | 45 | biimpi | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 48 | 7 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 49 | 41 42 48 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( 𝑀 ... 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 50 | 44 47 49 | fsumser | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) | 
						
							| 51 | 50 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  ( 𝐺 ‘ 𝑗 )  =  𝑧 )  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) | 
						
							| 52 | 40 51 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  ( 𝐺 ‘ 𝑗 )  =  𝑧 )  →  ( Σ^ ‘ ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝐹 ‘ 𝑘 ) ) )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) | 
						
							| 53 | 4 | eqcomi | ⊢ seq 𝑀 (  +  ,  𝐹 )  =  𝐺 | 
						
							| 54 | 53 | fveq1i | ⊢ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 )  =  ( 𝐺 ‘ 𝑗 ) | 
						
							| 55 | 54 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  ( 𝐺 ‘ 𝑗 )  =  𝑧 )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 )  =  ( 𝐺 ‘ 𝑗 ) ) | 
						
							| 56 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  ( 𝐺 ‘ 𝑗 )  =  𝑧 )  →  ( 𝐺 ‘ 𝑗 )  =  𝑧 ) | 
						
							| 57 | 52 55 56 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  ( 𝐺 ‘ 𝑗 )  =  𝑧 )  →  𝑧  =  ( Σ^ ‘ ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 58 | 3 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 59 | 58 | fveq2d | ⊢ ( 𝜑  →  ( Σ^ ‘ 𝐹 )  =  ( Σ^ ‘ ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 60 | 59 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  ( 𝐺 ‘ 𝑗 )  =  𝑧 )  →  ( Σ^ ‘ 𝐹 )  =  ( Σ^ ‘ ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 61 | 57 60 | breq12d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  ( 𝐺 ‘ 𝑗 )  =  𝑧 )  →  ( 𝑧  ≤  ( Σ^ ‘ 𝐹 )  ↔  ( Σ^ ‘ ( 𝑘  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝐹 ‘ 𝑘 ) ) )  ≤  ( Σ^ ‘ ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 62 | 36 61 | mpbird | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  ( 𝐺 ‘ 𝑗 )  =  𝑧 )  →  𝑧  ≤  ( Σ^ ‘ 𝐹 ) ) | 
						
							| 63 | 62 | 3exp | ⊢ ( 𝜑  →  ( 𝑗  ∈  𝑍  →  ( ( 𝐺 ‘ 𝑗 )  =  𝑧  →  𝑧  ≤  ( Σ^ ‘ 𝐹 ) ) ) ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ran  𝐺 )  →  ( 𝑗  ∈  𝑍  →  ( ( 𝐺 ‘ 𝑗 )  =  𝑧  →  𝑧  ≤  ( Σ^ ‘ 𝐹 ) ) ) ) | 
						
							| 65 | 64 | rexlimdv | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ran  𝐺 )  →  ( ∃ 𝑗  ∈  𝑍 ( 𝐺 ‘ 𝑗 )  =  𝑧  →  𝑧  ≤  ( Σ^ ‘ 𝐹 ) ) ) | 
						
							| 66 | 29 65 | mpd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ran  𝐺 )  →  𝑧  ≤  ( Σ^ ‘ 𝐹 ) ) | 
						
							| 67 | 66 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ran  𝐺 𝑧  ≤  ( Σ^ ‘ 𝐹 ) ) | 
						
							| 68 |  | nfv | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑧  <  ( Σ^ ‘ 𝐹 ) ) | 
						
							| 69 | 18 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑧  <  ( Σ^ ‘ 𝐹 ) )  →  𝑍  ∈  V ) | 
						
							| 70 | 6 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑧  <  ( Σ^ ‘ 𝐹 ) )  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 71 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑧  <  ( Σ^ ‘ 𝐹 ) )  →  𝑧  ∈  ℝ ) | 
						
							| 72 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  <  ( Σ^ ‘ 𝐹 ) )  →  𝑧  <  ( Σ^ ‘ 𝐹 ) ) | 
						
							| 73 | 59 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  <  ( Σ^ ‘ 𝐹 ) )  →  ( Σ^ ‘ 𝐹 )  =  ( Σ^ ‘ ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 74 | 72 73 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑧  <  ( Σ^ ‘ 𝐹 ) )  →  𝑧  <  ( Σ^ ‘ ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 75 | 74 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑧  <  ( Σ^ ‘ 𝐹 ) )  →  𝑧  <  ( Σ^ ‘ ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 76 | 68 69 70 71 75 | sge0gtfsumgt | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑧  <  ( Σ^ ‘ 𝐹 ) )  →  ∃ 𝑤  ∈  ( 𝒫  𝑍  ∩  Fin ) 𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 77 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 78 |  | elpwinss | ⊢ ( 𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  →  𝑤  ⊆  𝑍 ) | 
						
							| 79 | 78 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 ) )  →  𝑤  ⊆  𝑍 ) | 
						
							| 80 |  | elinel2 | ⊢ ( 𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  →  𝑤  ∈  Fin ) | 
						
							| 81 | 80 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 ) )  →  𝑤  ∈  Fin ) | 
						
							| 82 | 77 2 79 81 | uzfissfz | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 ) )  →  ∃ 𝑗  ∈  𝑍 𝑤  ⊆  ( 𝑀 ... 𝑗 ) ) | 
						
							| 83 | 82 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 ) )  →  ∃ 𝑗  ∈  𝑍 𝑤  ⊆  ( 𝑀 ... 𝑗 ) ) | 
						
							| 84 |  | simpl1r | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 ) )  ∧  𝑤  ⊆  ( 𝑀 ... 𝑗 ) )  →  𝑧  ∈  ℝ ) | 
						
							| 85 | 80 | adantl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin ) )  →  𝑤  ∈  Fin ) | 
						
							| 86 | 58 7 | fmpt3d | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ ) | 
						
							| 87 | 86 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin ) )  ∧  𝑘  ∈  𝑤 )  →  𝐹 : 𝑍 ⟶ ℝ ) | 
						
							| 88 | 78 | sselda | ⊢ ( ( 𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑘  ∈  𝑤 )  →  𝑘  ∈  𝑍 ) | 
						
							| 89 | 88 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin ) )  ∧  𝑘  ∈  𝑤 )  →  𝑘  ∈  𝑍 ) | 
						
							| 90 | 87 89 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin ) )  ∧  𝑘  ∈  𝑤 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 91 | 85 90 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin ) )  →  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 92 | 91 | ad4ant13 | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin ) )  ∧  𝑤  ⊆  ( 𝑀 ... 𝑗 ) )  →  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 93 | 92 | 3adantl3 | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 ) )  ∧  𝑤  ⊆  ( 𝑀 ... 𝑗 ) )  →  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 94 | 32 7 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 95 | 37 94 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 96 | 95 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin ) )  ∧  𝑤  ⊆  ( 𝑀 ... 𝑗 ) )  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 97 | 96 | 3adantl3 | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 ) )  ∧  𝑤  ⊆  ( 𝑀 ... 𝑗 ) )  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 98 |  | simpl3 | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 ) )  ∧  𝑤  ⊆  ( 𝑀 ... 𝑗 ) )  →  𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 99 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ⊆  ( 𝑀 ... 𝑗 ) )  →  ( 𝑀 ... 𝑗 )  ∈  Fin ) | 
						
							| 100 | 94 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑤  ⊆  ( 𝑀 ... 𝑗 ) )  ∧  𝑘  ∈  ( 𝑀 ... 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 101 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 102 | 101 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  0  ∈  ℝ* ) | 
						
							| 103 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 104 | 103 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  +∞  ∈  ℝ* ) | 
						
							| 105 |  | icogelb | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,) +∞ ) )  →  0  ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 106 | 102 104 6 105 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  0  ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 107 | 32 106 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑗 ) )  →  0  ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 108 | 107 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑤  ⊆  ( 𝑀 ... 𝑗 ) )  ∧  𝑘  ∈  ( 𝑀 ... 𝑗 ) )  →  0  ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 109 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  ⊆  ( 𝑀 ... 𝑗 ) )  →  𝑤  ⊆  ( 𝑀 ... 𝑗 ) ) | 
						
							| 110 | 99 100 108 109 | fsumless | ⊢ ( ( 𝜑  ∧  𝑤  ⊆  ( 𝑀 ... 𝑗 ) )  →  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 )  ≤  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 111 | 110 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑤  ⊆  ( 𝑀 ... 𝑗 ) )  →  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 )  ≤  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 112 | 111 | 3ad2antl1 | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 ) )  ∧  𝑤  ⊆  ( 𝑀 ... 𝑗 ) )  →  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 )  ≤  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 113 | 84 93 97 98 112 | ltletrd | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 ) )  ∧  𝑤  ⊆  ( 𝑀 ... 𝑗 ) )  →  𝑧  <  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 114 | 113 | ex | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 ) )  →  ( 𝑤  ⊆  ( 𝑀 ... 𝑗 )  →  𝑧  <  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 115 | 114 | reximdv | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 ) )  →  ( ∃ 𝑗  ∈  𝑍 𝑤  ⊆  ( 𝑀 ... 𝑗 )  →  ∃ 𝑗  ∈  𝑍 𝑧  <  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 116 | 83 115 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 ) )  →  ∃ 𝑗  ∈  𝑍 𝑧  <  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 117 | 116 | 3exp | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℝ )  →  ( 𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  →  ( 𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 )  →  ∃ 𝑗  ∈  𝑍 𝑧  <  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 118 | 117 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑧  <  ( Σ^ ‘ 𝐹 ) )  →  ( 𝑤  ∈  ( 𝒫  𝑍  ∩  Fin )  →  ( 𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 )  →  ∃ 𝑗  ∈  𝑍 𝑧  <  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 119 | 118 | rexlimdv | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑧  <  ( Σ^ ‘ 𝐹 ) )  →  ( ∃ 𝑤  ∈  ( 𝒫  𝑍  ∩  Fin ) 𝑧  <  Σ 𝑘  ∈  𝑤 ( 𝐹 ‘ 𝑘 )  →  ∃ 𝑗  ∈  𝑍 𝑧  <  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 120 | 76 119 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑧  <  ( Σ^ ‘ 𝐹 ) )  →  ∃ 𝑗  ∈  𝑍 𝑧  <  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 121 | 10 | ffnd | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  Fn  𝑍 ) | 
						
							| 122 | 121 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  seq 𝑀 (  +  ,  𝐹 )  Fn  𝑍 ) | 
						
							| 123 | 47 45 | sylibr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  𝑍 ) | 
						
							| 124 |  | fnfvelrn | ⊢ ( ( seq 𝑀 (  +  ,  𝐹 )  Fn  𝑍  ∧  𝑗  ∈  𝑍 )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 )  ∈  ran  seq 𝑀 (  +  ,  𝐹 ) ) | 
						
							| 125 | 122 123 124 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 )  ∈  ran  seq 𝑀 (  +  ,  𝐹 ) ) | 
						
							| 126 | 4 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝐺  =  seq 𝑀 (  +  ,  𝐹 ) ) | 
						
							| 127 | 126 | rneqd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ran  𝐺  =  ran  seq 𝑀 (  +  ,  𝐹 ) ) | 
						
							| 128 | 50 127 | eleq12d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ran  𝐺  ↔  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 )  ∈  ran  seq 𝑀 (  +  ,  𝐹 ) ) ) | 
						
							| 129 | 125 128 | mpbird | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ran  𝐺 ) | 
						
							| 130 | 129 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑗  ∈  𝑍 )  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ran  𝐺 ) | 
						
							| 131 | 130 | 3adant3 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑗  ∈  𝑍  ∧  𝑧  <  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) )  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ran  𝐺 ) | 
						
							| 132 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑗  ∈  𝑍  ∧  𝑧  <  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) )  →  𝑧  <  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 133 |  | breq2 | ⊢ ( 𝑦  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 )  →  ( 𝑧  <  𝑦  ↔  𝑧  <  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 134 | 133 | rspcev | ⊢ ( ( Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  ran  𝐺  ∧  𝑧  <  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) )  →  ∃ 𝑦  ∈  ran  𝐺 𝑧  <  𝑦 ) | 
						
							| 135 | 131 132 134 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑗  ∈  𝑍  ∧  𝑧  <  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) )  →  ∃ 𝑦  ∈  ran  𝐺 𝑧  <  𝑦 ) | 
						
							| 136 | 135 | 3exp | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℝ )  →  ( 𝑗  ∈  𝑍  →  ( 𝑧  <  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 )  →  ∃ 𝑦  ∈  ran  𝐺 𝑧  <  𝑦 ) ) ) | 
						
							| 137 | 136 | rexlimdv | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℝ )  →  ( ∃ 𝑗  ∈  𝑍 𝑧  <  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 )  →  ∃ 𝑦  ∈  ran  𝐺 𝑧  <  𝑦 ) ) | 
						
							| 138 | 137 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑧  <  ( Σ^ ‘ 𝐹 ) )  →  ( ∃ 𝑗  ∈  𝑍 𝑧  <  Σ 𝑘  ∈  ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 )  →  ∃ 𝑦  ∈  ran  𝐺 𝑧  <  𝑦 ) ) | 
						
							| 139 | 120 138 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℝ )  ∧  𝑧  <  ( Σ^ ‘ 𝐹 ) )  →  ∃ 𝑦  ∈  ran  𝐺 𝑧  <  𝑦 ) | 
						
							| 140 | 139 | ex | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℝ )  →  ( 𝑧  <  ( Σ^ ‘ 𝐹 )  →  ∃ 𝑦  ∈  ran  𝐺 𝑧  <  𝑦 ) ) | 
						
							| 141 | 140 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ℝ ( 𝑧  <  ( Σ^ ‘ 𝐹 )  →  ∃ 𝑦  ∈  ran  𝐺 𝑧  <  𝑦 ) ) | 
						
							| 142 |  | supxr2 | ⊢ ( ( ( ran  𝐺  ⊆  ℝ*  ∧  ( Σ^ ‘ 𝐹 )  ∈  ℝ* )  ∧  ( ∀ 𝑧  ∈  ran  𝐺 𝑧  ≤  ( Σ^ ‘ 𝐹 )  ∧  ∀ 𝑧  ∈  ℝ ( 𝑧  <  ( Σ^ ‘ 𝐹 )  →  ∃ 𝑦  ∈  ran  𝐺 𝑧  <  𝑦 ) ) )  →  sup ( ran  𝐺 ,  ℝ* ,   <  )  =  ( Σ^ ‘ 𝐹 ) ) | 
						
							| 143 | 17 23 67 141 142 | syl22anc | ⊢ ( 𝜑  →  sup ( ran  𝐺 ,  ℝ* ,   <  )  =  ( Σ^ ‘ 𝐹 ) ) | 
						
							| 144 | 143 | eqcomd | ⊢ ( 𝜑  →  ( Σ^ ‘ 𝐹 )  =  sup ( ran  𝐺 ,  ℝ* ,   <  ) ) |