| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0reuz.k | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | sge0reuz.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | sge0reuz.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 4 |  | sge0reuz.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐵  ∈  ( 0 [,) +∞ ) ) | 
						
							| 5 | 3 | a1i | ⊢ ( 𝜑  →  𝑍  =  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 6 |  | fvex | ⊢ ( ℤ≥ ‘ 𝑀 )  ∈  V | 
						
							| 7 | 5 6 | eqeltrdi | ⊢ ( 𝜑  →  𝑍  ∈  V ) | 
						
							| 8 | 1 7 4 | sge0revalmpt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  𝑍  ↦  𝐵 ) )  =  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) ,  ℝ* ,   <  ) ) | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 10 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 )  =  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) | 
						
							| 11 |  | nfv | ⊢ Ⅎ 𝑘 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) | 
						
							| 12 | 1 11 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) ) | 
						
							| 13 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  →  𝑥  ∈  Fin ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) )  →  𝑥  ∈  Fin ) | 
						
							| 15 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 16 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) )  ∧  𝑘  ∈  𝑥 )  →  𝜑 ) | 
						
							| 17 |  | elpwinss | ⊢ ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  →  𝑥  ⊆  𝑍 ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑘  ∈  𝑥 )  →  𝑥  ⊆  𝑍 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑘  ∈  𝑥 )  →  𝑘  ∈  𝑥 ) | 
						
							| 20 | 18 19 | sseldd | ⊢ ( ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑘  ∈  𝑥 )  →  𝑘  ∈  𝑍 ) | 
						
							| 21 | 20 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) )  ∧  𝑘  ∈  𝑥 )  →  𝑘  ∈  𝑍 ) | 
						
							| 22 | 16 21 4 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) )  ∧  𝑘  ∈  𝑥 )  →  𝐵  ∈  ( 0 [,) +∞ ) ) | 
						
							| 23 | 15 22 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) )  ∧  𝑘  ∈  𝑥 )  →  𝐵  ∈  ℝ ) | 
						
							| 24 | 12 14 23 | fsumreclf | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) )  →  Σ 𝑘  ∈  𝑥 𝐵  ∈  ℝ ) | 
						
							| 25 | 24 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) )  →  Σ 𝑘  ∈  𝑥 𝐵  ∈  ℝ* ) | 
						
							| 26 | 9 10 25 | rnmptssd | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 )  ⊆  ℝ* ) | 
						
							| 27 |  | supxrcl | ⊢ ( ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 )  ⊆  ℝ*  →  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 28 | 26 27 | syl | ⊢ ( 𝜑  →  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 29 |  | nfv | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 30 |  | eqid | ⊢ ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 )  =  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) | 
						
							| 31 |  | nfv | ⊢ Ⅎ 𝑘 𝑛  ∈  𝑍 | 
						
							| 32 | 1 31 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑛  ∈  𝑍 ) | 
						
							| 33 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ... 𝑛 )  ∈  Fin ) | 
						
							| 34 |  | elfzuz | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑛 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 35 | 34 3 | eleqtrrdi | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑛 )  →  𝑘  ∈  𝑍 ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑛 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 37 | 15 4 | sselid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐵  ∈  ℝ ) | 
						
							| 38 | 36 37 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑛 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 39 | 38 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑘  ∈  ( 𝑀 ... 𝑛 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 40 | 32 33 39 | fsumreclf | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  ∈  ℝ ) | 
						
							| 41 | 40 | rexrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  ∈  ℝ* ) | 
						
							| 42 | 29 30 41 | rnmptssd | ⊢ ( 𝜑  →  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 )  ⊆  ℝ* ) | 
						
							| 43 |  | supxrcl | ⊢ ( ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 )  ⊆  ℝ*  →  sup ( ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 44 | 42 43 | syl | ⊢ ( 𝜑  →  sup ( ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 45 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 46 | 10 | elrnmpt | ⊢ ( 𝑦  ∈  V  →  ( 𝑦  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 )  ↔  ∃ 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) 𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 ) ) | 
						
							| 47 | 45 46 | ax-mp | ⊢ ( 𝑦  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 )  ↔  ∃ 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) 𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 ) | 
						
							| 48 | 47 | biimpi | ⊢ ( 𝑦  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 )  →  ∃ 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) 𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) )  →  ∃ 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) 𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 ) | 
						
							| 50 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  →  𝑀  ∈  ℤ ) | 
						
							| 51 | 17 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  →  𝑥  ⊆  𝑍 ) | 
						
							| 52 | 14 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  →  𝑥  ∈  Fin ) | 
						
							| 53 | 50 3 51 52 | uzfissfz | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  →  ∃ 𝑛  ∈  𝑍 𝑥  ⊆  ( 𝑀 ... 𝑛 ) ) | 
						
							| 54 |  | nfv | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 ) | 
						
							| 55 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) | 
						
							| 56 | 55 | nfrn | ⊢ Ⅎ 𝑛 ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) | 
						
							| 57 |  | nfv | ⊢ Ⅎ 𝑛 𝑦  ≤  𝑤 | 
						
							| 58 | 56 57 | nfrexw | ⊢ Ⅎ 𝑛 ∃ 𝑤  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦  ≤  𝑤 | 
						
							| 59 |  | id | ⊢ ( 𝑛  ∈  𝑍  →  𝑛  ∈  𝑍 ) | 
						
							| 60 |  | sumex | ⊢ Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  ∈  V | 
						
							| 61 | 60 | a1i | ⊢ ( 𝑛  ∈  𝑍  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  ∈  V ) | 
						
							| 62 | 30 | elrnmpt1 | ⊢ ( ( 𝑛  ∈  𝑍  ∧  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  ∈  V )  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) ) | 
						
							| 63 | 59 61 62 | syl2anc | ⊢ ( 𝑛  ∈  𝑍  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) ) | 
						
							| 64 | 63 | 3ad2ant2 | ⊢ ( ( ( 𝜑  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ⊆  ( 𝑀 ... 𝑛 ) )  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) ) | 
						
							| 65 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑥  ⊆  ( 𝑀 ... 𝑛 ) )  →  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 ) | 
						
							| 66 |  | nfcv | ⊢ Ⅎ 𝑘 𝑦 | 
						
							| 67 |  | nfcv | ⊢ Ⅎ 𝑘 𝑥 | 
						
							| 68 | 67 | nfsum1 | ⊢ Ⅎ 𝑘 Σ 𝑘  ∈  𝑥 𝐵 | 
						
							| 69 | 66 68 | nfeq | ⊢ Ⅎ 𝑘 𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 | 
						
							| 70 | 1 69 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 ) | 
						
							| 71 |  | nfv | ⊢ Ⅎ 𝑘 𝑥  ⊆  ( 𝑀 ... 𝑛 ) | 
						
							| 72 | 70 71 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑥  ⊆  ( 𝑀 ... 𝑛 ) ) | 
						
							| 73 |  | fzfid | ⊢ ( ( ( 𝜑  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑥  ⊆  ( 𝑀 ... 𝑛 ) )  →  ( 𝑀 ... 𝑛 )  ∈  Fin ) | 
						
							| 74 | 38 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑥  ⊆  ( 𝑀 ... 𝑛 ) )  ∧  𝑘  ∈  ( 𝑀 ... 𝑛 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 75 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑥  ⊆  ( 𝑀 ... 𝑛 ) )  ∧  𝑘  ∈  ( 𝑀 ... 𝑛 ) )  →  𝜑 ) | 
						
							| 76 | 35 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑥  ⊆  ( 𝑀 ... 𝑛 ) )  ∧  𝑘  ∈  ( 𝑀 ... 𝑛 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 77 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 78 | 77 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  0  ∈  ℝ* ) | 
						
							| 79 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 80 | 79 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  +∞  ∈  ℝ* ) | 
						
							| 81 |  | icogelb | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  𝐵  ∈  ( 0 [,) +∞ ) )  →  0  ≤  𝐵 ) | 
						
							| 82 | 78 80 4 81 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  0  ≤  𝐵 ) | 
						
							| 83 | 75 76 82 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑥  ⊆  ( 𝑀 ... 𝑛 ) )  ∧  𝑘  ∈  ( 𝑀 ... 𝑛 ) )  →  0  ≤  𝐵 ) | 
						
							| 84 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑥  ⊆  ( 𝑀 ... 𝑛 ) )  →  𝑥  ⊆  ( 𝑀 ... 𝑛 ) ) | 
						
							| 85 | 72 73 74 83 84 | fsumlessf | ⊢ ( ( ( 𝜑  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑥  ⊆  ( 𝑀 ... 𝑛 ) )  →  Σ 𝑘  ∈  𝑥 𝐵  ≤  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) | 
						
							| 86 | 65 85 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑥  ⊆  ( 𝑀 ... 𝑛 ) )  →  𝑦  ≤  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) | 
						
							| 87 | 86 | 3adant2 | ⊢ ( ( ( 𝜑  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ⊆  ( 𝑀 ... 𝑛 ) )  →  𝑦  ≤  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) | 
						
							| 88 |  | breq2 | ⊢ ( 𝑤  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  →  ( 𝑦  ≤  𝑤  ↔  𝑦  ≤  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) ) | 
						
							| 89 | 88 | rspcev | ⊢ ( ( Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 )  ∧  𝑦  ≤  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 )  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦  ≤  𝑤 ) | 
						
							| 90 | 64 87 89 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ⊆  ( 𝑀 ... 𝑛 ) )  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦  ≤  𝑤 ) | 
						
							| 91 | 90 | 3exp | ⊢ ( ( 𝜑  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  →  ( 𝑛  ∈  𝑍  →  ( 𝑥  ⊆  ( 𝑀 ... 𝑛 )  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦  ≤  𝑤 ) ) ) | 
						
							| 92 | 91 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  →  ( 𝑛  ∈  𝑍  →  ( 𝑥  ⊆  ( 𝑀 ... 𝑛 )  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦  ≤  𝑤 ) ) ) | 
						
							| 93 | 54 58 92 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  →  ( ∃ 𝑛  ∈  𝑍 𝑥  ⊆  ( 𝑀 ... 𝑛 )  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦  ≤  𝑤 ) ) | 
						
							| 94 | 53 93 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦  ≤  𝑤 ) | 
						
							| 95 | 94 | 3exp | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  →  ( 𝑦  =  Σ 𝑘  ∈  𝑥 𝐵  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦  ≤  𝑤 ) ) ) | 
						
							| 96 | 95 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) 𝑦  =  Σ 𝑘  ∈  𝑥 𝐵  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦  ≤  𝑤 ) ) | 
						
							| 97 | 96 | imp | ⊢ ( ( 𝜑  ∧  ∃ 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) 𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 )  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦  ≤  𝑤 ) | 
						
							| 98 | 49 97 | syldan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) )  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦  ≤  𝑤 ) | 
						
							| 99 | 26 42 98 | suplesup2 | ⊢ ( 𝜑  →  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) ,  ℝ* ,   <  )  ≤  sup ( ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) ,  ℝ* ,   <  ) ) | 
						
							| 100 | 30 | elrnmpt | ⊢ ( 𝑦  ∈  V  →  ( 𝑦  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 )  ↔  ∃ 𝑛  ∈  𝑍 𝑦  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) ) | 
						
							| 101 | 45 100 | ax-mp | ⊢ ( 𝑦  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 )  ↔  ∃ 𝑛  ∈  𝑍 𝑦  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) | 
						
							| 102 | 101 | biimpi | ⊢ ( 𝑦  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 )  →  ∃ 𝑛  ∈  𝑍 𝑦  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) | 
						
							| 103 | 102 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) )  →  ∃ 𝑛  ∈  𝑍 𝑦  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) | 
						
							| 104 | 35 | ssriv | ⊢ ( 𝑀 ... 𝑛 )  ⊆  𝑍 | 
						
							| 105 |  | ovex | ⊢ ( 𝑀 ... 𝑛 )  ∈  V | 
						
							| 106 | 105 | elpw | ⊢ ( ( 𝑀 ... 𝑛 )  ∈  𝒫  𝑍  ↔  ( 𝑀 ... 𝑛 )  ⊆  𝑍 ) | 
						
							| 107 | 104 106 | mpbir | ⊢ ( 𝑀 ... 𝑛 )  ∈  𝒫  𝑍 | 
						
							| 108 |  | fzfi | ⊢ ( 𝑀 ... 𝑛 )  ∈  Fin | 
						
							| 109 | 107 108 | elini | ⊢ ( 𝑀 ... 𝑛 )  ∈  ( 𝒫  𝑍  ∩  Fin ) | 
						
							| 110 | 109 | a1i | ⊢ ( 𝑦  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  →  ( 𝑀 ... 𝑛 )  ∈  ( 𝒫  𝑍  ∩  Fin ) ) | 
						
							| 111 |  | id | ⊢ ( 𝑦  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  →  𝑦  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) | 
						
							| 112 |  | sumeq1 | ⊢ ( 𝑥  =  ( 𝑀 ... 𝑛 )  →  Σ 𝑘  ∈  𝑥 𝐵  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) | 
						
							| 113 | 112 | rspceeqv | ⊢ ( ( ( 𝑀 ... 𝑛 )  ∈  ( 𝒫  𝑍  ∩  Fin )  ∧  𝑦  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 )  →  ∃ 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) 𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 ) | 
						
							| 114 | 110 111 113 | syl2anc | ⊢ ( 𝑦  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  →  ∃ 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin ) 𝑦  =  Σ 𝑘  ∈  𝑥 𝐵 ) | 
						
							| 115 | 45 | a1i | ⊢ ( 𝑦  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  →  𝑦  ∈  V ) | 
						
							| 116 | 10 114 115 | elrnmptd | ⊢ ( 𝑦  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  →  𝑦  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) ) | 
						
							| 117 | 116 | 2a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  →  ( 𝑦  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  →  𝑦  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) ) ) ) | 
						
							| 118 | 117 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  𝑍 𝑦  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  →  𝑦  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) ) ) | 
						
							| 119 | 118 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) )  →  ( ∃ 𝑛  ∈  𝑍 𝑦  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵  →  𝑦  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) ) ) | 
						
							| 120 | 103 119 | mpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) )  →  𝑦  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) ) | 
						
							| 121 | 120 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) ) | 
						
							| 122 |  | dfss3 | ⊢ ( ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 )  ⊆  ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 )  ↔  ∀ 𝑦  ∈  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) ) | 
						
							| 123 | 121 122 | sylibr | ⊢ ( 𝜑  →  ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 )  ⊆  ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) ) | 
						
							| 124 |  | supxrss | ⊢ ( ( ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 )  ⊆  ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 )  ∧  ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 )  ⊆  ℝ* )  →  sup ( ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) ,  ℝ* ,   <  )  ≤  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) ,  ℝ* ,   <  ) ) | 
						
							| 125 | 123 26 124 | syl2anc | ⊢ ( 𝜑  →  sup ( ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) ,  ℝ* ,   <  )  ≤  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) ,  ℝ* ,   <  ) ) | 
						
							| 126 | 28 44 99 125 | xrletrid | ⊢ ( 𝜑  →  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑍  ∩  Fin )  ↦  Σ 𝑘  ∈  𝑥 𝐵 ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) ,  ℝ* ,   <  ) ) | 
						
							| 127 | 8 126 | eqtrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑘  ∈  𝑍  ↦  𝐵 ) )  =  sup ( ran  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐵 ) ,  ℝ* ,   <  ) ) |