Metamath Proof Explorer


Theorem sge0reuz

Description: Value of the generalized sum of nonnegative reals, when the domain is a set of upper integers. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses sge0reuz.k 𝑘 𝜑
sge0reuz.m ( 𝜑𝑀 ∈ ℤ )
sge0reuz.z 𝑍 = ( ℤ𝑀 )
sge0reuz.b ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
Assertion sge0reuz ( 𝜑 → ( Σ^ ‘ ( 𝑘𝑍𝐵 ) ) = sup ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 sge0reuz.k 𝑘 𝜑
2 sge0reuz.m ( 𝜑𝑀 ∈ ℤ )
3 sge0reuz.z 𝑍 = ( ℤ𝑀 )
4 sge0reuz.b ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
5 3 a1i ( 𝜑𝑍 = ( ℤ𝑀 ) )
6 fvex ( ℤ𝑀 ) ∈ V
7 5 6 eqeltrdi ( 𝜑𝑍 ∈ V )
8 1 7 4 sge0revalmpt ( 𝜑 → ( Σ^ ‘ ( 𝑘𝑍𝐵 ) ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) , ℝ* , < ) )
9 nfv 𝑥 𝜑
10 eqid ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) = ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 )
11 nfv 𝑘 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin )
12 1 11 nfan 𝑘 ( 𝜑𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) )
13 elinel2 ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑥 ∈ Fin )
14 13 adantl ( ( 𝜑𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑥 ∈ Fin )
15 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
16 simpll ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘𝑥 ) → 𝜑 )
17 elpwinss ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑥𝑍 )
18 17 adantr ( ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑘𝑥 ) → 𝑥𝑍 )
19 simpr ( ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑘𝑥 ) → 𝑘𝑥 )
20 18 19 sseldd ( ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑘𝑥 ) → 𝑘𝑍 )
21 20 adantll ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘𝑥 ) → 𝑘𝑍 )
22 16 21 4 syl2anc ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘𝑥 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
23 15 22 sseldi ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘𝑥 ) → 𝐵 ∈ ℝ )
24 12 14 23 fsumreclf ( ( 𝜑𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → Σ 𝑘𝑥 𝐵 ∈ ℝ )
25 24 rexrd ( ( 𝜑𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → Σ 𝑘𝑥 𝐵 ∈ ℝ* )
26 9 10 25 rnmptssd ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) ⊆ ℝ* )
27 supxrcl ( ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) ⊆ ℝ* → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) , ℝ* , < ) ∈ ℝ* )
28 26 27 syl ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) , ℝ* , < ) ∈ ℝ* )
29 nfv 𝑛 𝜑
30 eqid ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) = ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
31 nfv 𝑘 𝑛𝑍
32 1 31 nfan 𝑘 ( 𝜑𝑛𝑍 )
33 fzfid ( ( 𝜑𝑛𝑍 ) → ( 𝑀 ... 𝑛 ) ∈ Fin )
34 elfzuz ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ ( ℤ𝑀 ) )
35 34 3 eleqtrrdi ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘𝑍 )
36 35 adantl ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑘𝑍 )
37 15 4 sseldi ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℝ )
38 36 37 syldan ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐵 ∈ ℝ )
39 38 adantlr ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐵 ∈ ℝ )
40 32 33 39 fsumreclf ( ( 𝜑𝑛𝑍 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ ℝ )
41 40 rexrd ( ( 𝜑𝑛𝑍 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ ℝ* )
42 29 30 41 rnmptssd ( 𝜑 → ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ⊆ ℝ* )
43 supxrcl ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ⊆ ℝ* → sup ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) ∈ ℝ* )
44 42 43 syl ( 𝜑 → sup ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) ∈ ℝ* )
45 vex 𝑦 ∈ V
46 10 elrnmpt ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝑦 = Σ 𝑘𝑥 𝐵 ) )
47 45 46 ax-mp ( 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝑦 = Σ 𝑘𝑥 𝐵 )
48 47 biimpi ( 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) → ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝑦 = Σ 𝑘𝑥 𝐵 )
49 48 adantl ( ( 𝜑𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝑦 = Σ 𝑘𝑥 𝐵 )
50 2 3ad2ant1 ( ( 𝜑𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘𝑥 𝐵 ) → 𝑀 ∈ ℤ )
51 17 3ad2ant2 ( ( 𝜑𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘𝑥 𝐵 ) → 𝑥𝑍 )
52 14 3adant3 ( ( 𝜑𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘𝑥 𝐵 ) → 𝑥 ∈ Fin )
53 50 3 51 52 uzfissfz ( ( 𝜑𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘𝑥 𝐵 ) → ∃ 𝑛𝑍 𝑥 ⊆ ( 𝑀 ... 𝑛 ) )
54 nfv 𝑛 ( 𝜑𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘𝑥 𝐵 )
55 nfmpt1 𝑛 ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
56 55 nfrn 𝑛 ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
57 nfv 𝑛 𝑦𝑤
58 56 57 nfrex 𝑛𝑤 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦𝑤
59 id ( 𝑛𝑍𝑛𝑍 )
60 sumex Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ V
61 60 a1i ( 𝑛𝑍 → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ V )
62 30 elrnmpt1 ( ( 𝑛𝑍 ∧ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ V ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) )
63 59 61 62 syl2anc ( 𝑛𝑍 → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) )
64 63 3ad2ant2 ( ( ( 𝜑𝑦 = Σ 𝑘𝑥 𝐵 ) ∧ 𝑛𝑍𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) )
65 simplr ( ( ( 𝜑𝑦 = Σ 𝑘𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) → 𝑦 = Σ 𝑘𝑥 𝐵 )
66 nfcv 𝑘 𝑦
67 nfcv 𝑘 𝑥
68 67 nfsum1 𝑘 Σ 𝑘𝑥 𝐵
69 66 68 nfeq 𝑘 𝑦 = Σ 𝑘𝑥 𝐵
70 1 69 nfan 𝑘 ( 𝜑𝑦 = Σ 𝑘𝑥 𝐵 )
71 nfv 𝑘 𝑥 ⊆ ( 𝑀 ... 𝑛 )
72 70 71 nfan 𝑘 ( ( 𝜑𝑦 = Σ 𝑘𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) )
73 fzfid ( ( ( 𝜑𝑦 = Σ 𝑘𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) → ( 𝑀 ... 𝑛 ) ∈ Fin )
74 38 ad4ant14 ( ( ( ( 𝜑𝑦 = Σ 𝑘𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐵 ∈ ℝ )
75 simplll ( ( ( ( 𝜑𝑦 = Σ 𝑘𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝜑 )
76 35 adantl ( ( ( ( 𝜑𝑦 = Σ 𝑘𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑘𝑍 )
77 0xr 0 ∈ ℝ*
78 77 a1i ( ( 𝜑𝑘𝑍 ) → 0 ∈ ℝ* )
79 pnfxr +∞ ∈ ℝ*
80 79 a1i ( ( 𝜑𝑘𝑍 ) → +∞ ∈ ℝ* )
81 icogelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ ( 0 [,) +∞ ) ) → 0 ≤ 𝐵 )
82 78 80 4 81 syl3anc ( ( 𝜑𝑘𝑍 ) → 0 ≤ 𝐵 )
83 75 76 82 syl2anc ( ( ( ( 𝜑𝑦 = Σ 𝑘𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 0 ≤ 𝐵 )
84 simpr ( ( ( 𝜑𝑦 = Σ 𝑘𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) → 𝑥 ⊆ ( 𝑀 ... 𝑛 ) )
85 72 73 74 83 84 fsumlessf ( ( ( 𝜑𝑦 = Σ 𝑘𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) → Σ 𝑘𝑥 𝐵 ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
86 65 85 eqbrtrd ( ( ( 𝜑𝑦 = Σ 𝑘𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) → 𝑦 ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
87 86 3adant2 ( ( ( 𝜑𝑦 = Σ 𝑘𝑥 𝐵 ) ∧ 𝑛𝑍𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) → 𝑦 ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
88 breq2 ( 𝑤 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → ( 𝑦𝑤𝑦 ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) )
89 88 rspcev ( ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ∧ 𝑦 ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) → ∃ 𝑤 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦𝑤 )
90 64 87 89 syl2anc ( ( ( 𝜑𝑦 = Σ 𝑘𝑥 𝐵 ) ∧ 𝑛𝑍𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) → ∃ 𝑤 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦𝑤 )
91 90 3exp ( ( 𝜑𝑦 = Σ 𝑘𝑥 𝐵 ) → ( 𝑛𝑍 → ( 𝑥 ⊆ ( 𝑀 ... 𝑛 ) → ∃ 𝑤 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦𝑤 ) ) )
92 91 3adant2 ( ( 𝜑𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘𝑥 𝐵 ) → ( 𝑛𝑍 → ( 𝑥 ⊆ ( 𝑀 ... 𝑛 ) → ∃ 𝑤 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦𝑤 ) ) )
93 54 58 92 rexlimd ( ( 𝜑𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘𝑥 𝐵 ) → ( ∃ 𝑛𝑍 𝑥 ⊆ ( 𝑀 ... 𝑛 ) → ∃ 𝑤 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦𝑤 ) )
94 53 93 mpd ( ( 𝜑𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘𝑥 𝐵 ) → ∃ 𝑤 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦𝑤 )
95 94 3exp ( 𝜑 → ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) → ( 𝑦 = Σ 𝑘𝑥 𝐵 → ∃ 𝑤 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦𝑤 ) ) )
96 95 rexlimdv ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝑦 = Σ 𝑘𝑥 𝐵 → ∃ 𝑤 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦𝑤 ) )
97 96 imp ( ( 𝜑 ∧ ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝑦 = Σ 𝑘𝑥 𝐵 ) → ∃ 𝑤 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦𝑤 )
98 49 97 syldan ( ( 𝜑𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) ) → ∃ 𝑤 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦𝑤 )
99 26 42 98 suplesup2 ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) , ℝ* , < ) ≤ sup ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) )
100 30 elrnmpt ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ↔ ∃ 𝑛𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) )
101 45 100 ax-mp ( 𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ↔ ∃ 𝑛𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
102 101 biimpi ( 𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) → ∃ 𝑛𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
103 102 adantl ( ( 𝜑𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) → ∃ 𝑛𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
104 35 ssriv ( 𝑀 ... 𝑛 ) ⊆ 𝑍
105 ovex ( 𝑀 ... 𝑛 ) ∈ V
106 105 elpw ( ( 𝑀 ... 𝑛 ) ∈ 𝒫 𝑍 ↔ ( 𝑀 ... 𝑛 ) ⊆ 𝑍 )
107 104 106 mpbir ( 𝑀 ... 𝑛 ) ∈ 𝒫 𝑍
108 fzfi ( 𝑀 ... 𝑛 ) ∈ Fin
109 107 108 elini ( 𝑀 ... 𝑛 ) ∈ ( 𝒫 𝑍 ∩ Fin )
110 109 a1i ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → ( 𝑀 ... 𝑛 ) ∈ ( 𝒫 𝑍 ∩ Fin ) )
111 id ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
112 sumeq1 ( 𝑥 = ( 𝑀 ... 𝑛 ) → Σ 𝑘𝑥 𝐵 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
113 112 rspceeqv ( ( ( 𝑀 ... 𝑛 ) ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) → ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝑦 = Σ 𝑘𝑥 𝐵 )
114 110 111 113 syl2anc ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝑦 = Σ 𝑘𝑥 𝐵 )
115 45 a1i ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑦 ∈ V )
116 10 114 115 elrnmptd ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) )
117 116 2a1i ( 𝜑 → ( 𝑛𝑍 → ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) ) ) )
118 117 rexlimdv ( 𝜑 → ( ∃ 𝑛𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) ) )
119 118 adantr ( ( 𝜑𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) → ( ∃ 𝑛𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) ) )
120 103 119 mpd ( ( 𝜑𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) → 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) )
121 120 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) )
122 dfss3 ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ⊆ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) ↔ ∀ 𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) )
123 121 122 sylibr ( 𝜑 → ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ⊆ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) )
124 supxrss ( ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ⊆ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) ∧ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) ⊆ ℝ* ) → sup ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) ≤ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) , ℝ* , < ) )
125 123 26 124 syl2anc ( 𝜑 → sup ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) ≤ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) , ℝ* , < ) )
126 28 44 99 125 xrletrid ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘𝑥 𝐵 ) , ℝ* , < ) = sup ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) )
127 8 126 eqtrd ( 𝜑 → ( Σ^ ‘ ( 𝑘𝑍𝐵 ) ) = sup ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) )