Step |
Hyp |
Ref |
Expression |
1 |
|
sge0reuz.k |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
sge0reuz.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
sge0reuz.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
sge0reuz.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
5 |
3
|
a1i |
⊢ ( 𝜑 → 𝑍 = ( ℤ≥ ‘ 𝑀 ) ) |
6 |
|
fvex |
⊢ ( ℤ≥ ‘ 𝑀 ) ∈ V |
7 |
5 6
|
eqeltrdi |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
8 |
1 7 4
|
sge0revalmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) , ℝ* , < ) ) |
9 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
10 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) = ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) |
11 |
|
nfv |
⊢ Ⅎ 𝑘 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) |
12 |
1 11
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ) |
13 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑥 ∈ Fin ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑥 ∈ Fin ) |
15 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
16 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝜑 ) |
17 |
|
elpwinss |
⊢ ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑥 ⊆ 𝑍 ) |
18 |
17
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑘 ∈ 𝑥 ) → 𝑥 ⊆ 𝑍 ) |
19 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝑥 ) |
20 |
18 19
|
sseldd |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝑍 ) |
21 |
20
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝑍 ) |
22 |
16 21 4
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
23 |
15 22
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝐵 ∈ ℝ ) |
24 |
12 14 23
|
fsumreclf |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 𝐵 ∈ ℝ ) |
25 |
24
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 𝐵 ∈ ℝ* ) |
26 |
9 10 25
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) ⊆ ℝ* ) |
27 |
|
supxrcl |
⊢ ( ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) ⊆ ℝ* → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) , ℝ* , < ) ∈ ℝ* ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) , ℝ* , < ) ∈ ℝ* ) |
29 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
30 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) = ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
31 |
|
nfv |
⊢ Ⅎ 𝑘 𝑛 ∈ 𝑍 |
32 |
1 31
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
33 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ... 𝑛 ) ∈ Fin ) |
34 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
35 |
34 3
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ 𝑍 ) |
36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑘 ∈ 𝑍 ) |
37 |
15 4
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
38 |
36 37
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐵 ∈ ℝ ) |
39 |
38
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐵 ∈ ℝ ) |
40 |
32 33 39
|
fsumreclf |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ ℝ ) |
41 |
40
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ ℝ* ) |
42 |
29 30 41
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ⊆ ℝ* ) |
43 |
|
supxrcl |
⊢ ( ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ⊆ ℝ* → sup ( ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) ∈ ℝ* ) |
44 |
42 43
|
syl |
⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) ∈ ℝ* ) |
45 |
|
vex |
⊢ 𝑦 ∈ V |
46 |
10
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) ) |
47 |
45 46
|
ax-mp |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) |
48 |
47
|
biimpi |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) → ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) |
49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) |
50 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) → 𝑀 ∈ ℤ ) |
51 |
17
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) → 𝑥 ⊆ 𝑍 ) |
52 |
14
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) → 𝑥 ∈ Fin ) |
53 |
50 3 51 52
|
uzfissfz |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) → ∃ 𝑛 ∈ 𝑍 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) |
54 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) |
55 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
56 |
55
|
nfrn |
⊢ Ⅎ 𝑛 ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
57 |
|
nfv |
⊢ Ⅎ 𝑛 𝑦 ≤ 𝑤 |
58 |
56 57
|
nfrex |
⊢ Ⅎ 𝑛 ∃ 𝑤 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ≤ 𝑤 |
59 |
|
id |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ 𝑍 ) |
60 |
|
sumex |
⊢ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ V |
61 |
60
|
a1i |
⊢ ( 𝑛 ∈ 𝑍 → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ V ) |
62 |
30
|
elrnmpt1 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ V ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) |
63 |
59 61 62
|
syl2anc |
⊢ ( 𝑛 ∈ 𝑍 → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) |
64 |
63
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) |
65 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) → 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) |
66 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑦 |
67 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑥 |
68 |
67
|
nfsum1 |
⊢ Ⅎ 𝑘 Σ 𝑘 ∈ 𝑥 𝐵 |
69 |
66 68
|
nfeq |
⊢ Ⅎ 𝑘 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 |
70 |
1 69
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) |
71 |
|
nfv |
⊢ Ⅎ 𝑘 𝑥 ⊆ ( 𝑀 ... 𝑛 ) |
72 |
70 71
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) |
73 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) → ( 𝑀 ... 𝑛 ) ∈ Fin ) |
74 |
38
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐵 ∈ ℝ ) |
75 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝜑 ) |
76 |
35
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑘 ∈ 𝑍 ) |
77 |
|
0xr |
⊢ 0 ∈ ℝ* |
78 |
77
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ∈ ℝ* ) |
79 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
80 |
79
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → +∞ ∈ ℝ* ) |
81 |
|
icogelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → 0 ≤ 𝐵 ) |
82 |
78 80 4 81
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ 𝐵 ) |
83 |
75 76 82
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 0 ≤ 𝐵 ) |
84 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) → 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) |
85 |
72 73 74 83 84
|
fsumlessf |
⊢ ( ( ( 𝜑 ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) → Σ 𝑘 ∈ 𝑥 𝐵 ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
86 |
65 85
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) → 𝑦 ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
87 |
86
|
3adant2 |
⊢ ( ( ( 𝜑 ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) → 𝑦 ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
88 |
|
breq2 |
⊢ ( 𝑤 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → ( 𝑦 ≤ 𝑤 ↔ 𝑦 ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) |
89 |
88
|
rspcev |
⊢ ( ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ∧ 𝑦 ≤ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) → ∃ 𝑤 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ≤ 𝑤 ) |
90 |
64 87 89
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ⊆ ( 𝑀 ... 𝑛 ) ) → ∃ 𝑤 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ≤ 𝑤 ) |
91 |
90
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) → ( 𝑛 ∈ 𝑍 → ( 𝑥 ⊆ ( 𝑀 ... 𝑛 ) → ∃ 𝑤 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ≤ 𝑤 ) ) ) |
92 |
91
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) → ( 𝑛 ∈ 𝑍 → ( 𝑥 ⊆ ( 𝑀 ... 𝑛 ) → ∃ 𝑤 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ≤ 𝑤 ) ) ) |
93 |
54 58 92
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ⊆ ( 𝑀 ... 𝑛 ) → ∃ 𝑤 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ≤ 𝑤 ) ) |
94 |
53 93
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) → ∃ 𝑤 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ≤ 𝑤 ) |
95 |
94
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) → ( 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 → ∃ 𝑤 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ≤ 𝑤 ) ) ) |
96 |
95
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 → ∃ 𝑤 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ≤ 𝑤 ) ) |
97 |
96
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) → ∃ 𝑤 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ≤ 𝑤 ) |
98 |
49 97
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) ) → ∃ 𝑤 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ≤ 𝑤 ) |
99 |
26 42 98
|
suplesup2 |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) , ℝ* , < ) ≤ sup ( ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) ) |
100 |
30
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) |
101 |
45 100
|
ax-mp |
⊢ ( 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
102 |
101
|
biimpi |
⊢ ( 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) → ∃ 𝑛 ∈ 𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
103 |
102
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) → ∃ 𝑛 ∈ 𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
104 |
35
|
ssriv |
⊢ ( 𝑀 ... 𝑛 ) ⊆ 𝑍 |
105 |
|
ovex |
⊢ ( 𝑀 ... 𝑛 ) ∈ V |
106 |
105
|
elpw |
⊢ ( ( 𝑀 ... 𝑛 ) ∈ 𝒫 𝑍 ↔ ( 𝑀 ... 𝑛 ) ⊆ 𝑍 ) |
107 |
104 106
|
mpbir |
⊢ ( 𝑀 ... 𝑛 ) ∈ 𝒫 𝑍 |
108 |
|
fzfi |
⊢ ( 𝑀 ... 𝑛 ) ∈ Fin |
109 |
107 108
|
elini |
⊢ ( 𝑀 ... 𝑛 ) ∈ ( 𝒫 𝑍 ∩ Fin ) |
110 |
109
|
a1i |
⊢ ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → ( 𝑀 ... 𝑛 ) ∈ ( 𝒫 𝑍 ∩ Fin ) ) |
111 |
|
id |
⊢ ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
112 |
|
sumeq1 |
⊢ ( 𝑥 = ( 𝑀 ... 𝑛 ) → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
113 |
112
|
rspceeqv |
⊢ ( ( ( 𝑀 ... 𝑛 ) ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) → ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) |
114 |
110 111 113
|
syl2anc |
⊢ ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → ∃ 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) 𝑦 = Σ 𝑘 ∈ 𝑥 𝐵 ) |
115 |
45
|
a1i |
⊢ ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → 𝑦 ∈ V ) |
116 |
10 114 115
|
elrnmptd |
⊢ ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) ) |
117 |
116
|
2a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 → ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) ) ) ) |
118 |
117
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ 𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) ) ) |
119 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) → ( ∃ 𝑛 ∈ 𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) ) ) |
120 |
103 119
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) → 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) ) |
121 |
120
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) ) |
122 |
|
dfss3 |
⊢ ( ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ⊆ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) ↔ ∀ 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) ) |
123 |
121 122
|
sylibr |
⊢ ( 𝜑 → ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ⊆ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) ) |
124 |
|
supxrss |
⊢ ( ( ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ⊆ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) ∧ ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) ⊆ ℝ* ) → sup ( ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) ≤ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) , ℝ* , < ) ) |
125 |
123 26 124
|
syl2anc |
⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) ≤ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) , ℝ* , < ) ) |
126 |
28 44 99 125
|
xrletrid |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑍 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐵 ) , ℝ* , < ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) ) |
127 |
8 126
|
eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) ) |