Step |
Hyp |
Ref |
Expression |
1 |
|
suplesup2.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
2 |
|
suplesup2.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ* ) |
3 |
|
suplesup2.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) |
4 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦 ) → 𝑥 ∈ ℝ* ) |
6 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦 ) → 𝜑 ) |
7 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦 ) → 𝑦 ∈ 𝐵 ) |
8 |
2
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℝ* ) |
9 |
6 7 8
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦 ) → 𝑦 ∈ ℝ* ) |
10 |
|
supxrcl |
⊢ ( 𝐵 ⊆ ℝ* → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) |
12 |
6 11
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦 ) → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) |
13 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦 ) → 𝑥 ≤ 𝑦 ) |
14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐵 ⊆ ℝ* ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
16 |
|
supxrub |
⊢ ( ( 𝐵 ⊆ ℝ* ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ≤ sup ( 𝐵 , ℝ* , < ) ) |
17 |
14 15 16
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ≤ sup ( 𝐵 , ℝ* , < ) ) |
18 |
6 7 17
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦 ) → 𝑦 ≤ sup ( 𝐵 , ℝ* , < ) ) |
19 |
5 9 12 13 18
|
xrletrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦 ) → 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) |
20 |
19
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 → ( 𝑥 ≤ 𝑦 → 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) ) ) |
21 |
20
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) ) |
22 |
3 21
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) |
23 |
22
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) |
24 |
|
supxrleub |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) ) |
25 |
1 11 24
|
syl2anc |
⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) ) |
26 |
23 25
|
mpbird |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) |