Metamath Proof Explorer


Theorem suplesup2

Description: If any element of A is less than or equal to an element in B , then the supremum of A is less than or equal to the supremum of B . (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses suplesup2.a φA*
suplesup2.b φB*
suplesup2.c φxAyBxy
Assertion suplesup2 φsupA*<supB*<

Proof

Step Hyp Ref Expression
1 suplesup2.a φA*
2 suplesup2.b φB*
3 suplesup2.c φxAyBxy
4 1 sselda φxAx*
5 4 3ad2ant1 φxAyBxyx*
6 simp1l φxAyBxyφ
7 simp2 φxAyBxyyB
8 2 sselda φyBy*
9 6 7 8 syl2anc φxAyBxyy*
10 supxrcl B*supB*<*
11 2 10 syl φsupB*<*
12 6 11 syl φxAyBxysupB*<*
13 simp3 φxAyBxyxy
14 2 adantr φyBB*
15 simpr φyByB
16 supxrub B*yBysupB*<
17 14 15 16 syl2anc φyBysupB*<
18 6 7 17 syl2anc φxAyBxyysupB*<
19 5 9 12 13 18 xrletrd φxAyBxyxsupB*<
20 19 3exp φxAyBxyxsupB*<
21 20 rexlimdv φxAyBxyxsupB*<
22 3 21 mpd φxAxsupB*<
23 22 ralrimiva φxAxsupB*<
24 supxrleub A*supB*<*supA*<supB*<xAxsupB*<
25 1 11 24 syl2anc φsupA*<supB*<xAxsupB*<
26 23 25 mpbird φsupA*<supB*<