Description: If any element of A is less than or equal to an element in B , then the supremum of A is less than or equal to the supremum of B . (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | suplesup2.a | |
|
suplesup2.b | |
||
suplesup2.c | |
||
Assertion | suplesup2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplesup2.a | |
|
2 | suplesup2.b | |
|
3 | suplesup2.c | |
|
4 | 1 | sselda | |
5 | 4 | 3ad2ant1 | |
6 | simp1l | |
|
7 | simp2 | |
|
8 | 2 | sselda | |
9 | 6 7 8 | syl2anc | |
10 | supxrcl | |
|
11 | 2 10 | syl | |
12 | 6 11 | syl | |
13 | simp3 | |
|
14 | 2 | adantr | |
15 | simpr | |
|
16 | supxrub | |
|
17 | 14 15 16 | syl2anc | |
18 | 6 7 17 | syl2anc | |
19 | 5 9 12 13 18 | xrletrd | |
20 | 19 | 3exp | |
21 | 20 | rexlimdv | |
22 | 3 21 | mpd | |
23 | 22 | ralrimiva | |
24 | supxrleub | |
|
25 | 1 11 24 | syl2anc | |
26 | 23 25 | mpbird | |