| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0reuz.k |  |-  F/ k ph | 
						
							| 2 |  | sge0reuz.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | sge0reuz.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 4 |  | sge0reuz.b |  |-  ( ( ph /\ k e. Z ) -> B e. ( 0 [,) +oo ) ) | 
						
							| 5 | 3 | a1i |  |-  ( ph -> Z = ( ZZ>= ` M ) ) | 
						
							| 6 |  | fvex |  |-  ( ZZ>= ` M ) e. _V | 
						
							| 7 | 5 6 | eqeltrdi |  |-  ( ph -> Z e. _V ) | 
						
							| 8 | 1 7 4 | sge0revalmpt |  |-  ( ph -> ( sum^ ` ( k e. Z |-> B ) ) = sup ( ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) , RR* , < ) ) | 
						
							| 9 |  | nfv |  |-  F/ x ph | 
						
							| 10 |  | eqid |  |-  ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) = ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) | 
						
							| 11 |  | nfv |  |-  F/ k x e. ( ~P Z i^i Fin ) | 
						
							| 12 | 1 11 | nfan |  |-  F/ k ( ph /\ x e. ( ~P Z i^i Fin ) ) | 
						
							| 13 |  | elinel2 |  |-  ( x e. ( ~P Z i^i Fin ) -> x e. Fin ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ x e. ( ~P Z i^i Fin ) ) -> x e. Fin ) | 
						
							| 15 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 16 |  | simpll |  |-  ( ( ( ph /\ x e. ( ~P Z i^i Fin ) ) /\ k e. x ) -> ph ) | 
						
							| 17 |  | elpwinss |  |-  ( x e. ( ~P Z i^i Fin ) -> x C_ Z ) | 
						
							| 18 | 17 | adantr |  |-  ( ( x e. ( ~P Z i^i Fin ) /\ k e. x ) -> x C_ Z ) | 
						
							| 19 |  | simpr |  |-  ( ( x e. ( ~P Z i^i Fin ) /\ k e. x ) -> k e. x ) | 
						
							| 20 | 18 19 | sseldd |  |-  ( ( x e. ( ~P Z i^i Fin ) /\ k e. x ) -> k e. Z ) | 
						
							| 21 | 20 | adantll |  |-  ( ( ( ph /\ x e. ( ~P Z i^i Fin ) ) /\ k e. x ) -> k e. Z ) | 
						
							| 22 | 16 21 4 | syl2anc |  |-  ( ( ( ph /\ x e. ( ~P Z i^i Fin ) ) /\ k e. x ) -> B e. ( 0 [,) +oo ) ) | 
						
							| 23 | 15 22 | sselid |  |-  ( ( ( ph /\ x e. ( ~P Z i^i Fin ) ) /\ k e. x ) -> B e. RR ) | 
						
							| 24 | 12 14 23 | fsumreclf |  |-  ( ( ph /\ x e. ( ~P Z i^i Fin ) ) -> sum_ k e. x B e. RR ) | 
						
							| 25 | 24 | rexrd |  |-  ( ( ph /\ x e. ( ~P Z i^i Fin ) ) -> sum_ k e. x B e. RR* ) | 
						
							| 26 | 9 10 25 | rnmptssd |  |-  ( ph -> ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) C_ RR* ) | 
						
							| 27 |  | supxrcl |  |-  ( ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) C_ RR* -> sup ( ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) , RR* , < ) e. RR* ) | 
						
							| 28 | 26 27 | syl |  |-  ( ph -> sup ( ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) , RR* , < ) e. RR* ) | 
						
							| 29 |  | nfv |  |-  F/ n ph | 
						
							| 30 |  | eqid |  |-  ( n e. Z |-> sum_ k e. ( M ... n ) B ) = ( n e. Z |-> sum_ k e. ( M ... n ) B ) | 
						
							| 31 |  | nfv |  |-  F/ k n e. Z | 
						
							| 32 | 1 31 | nfan |  |-  F/ k ( ph /\ n e. Z ) | 
						
							| 33 |  | fzfid |  |-  ( ( ph /\ n e. Z ) -> ( M ... n ) e. Fin ) | 
						
							| 34 |  | elfzuz |  |-  ( k e. ( M ... n ) -> k e. ( ZZ>= ` M ) ) | 
						
							| 35 | 34 3 | eleqtrrdi |  |-  ( k e. ( M ... n ) -> k e. Z ) | 
						
							| 36 | 35 | adantl |  |-  ( ( ph /\ k e. ( M ... n ) ) -> k e. Z ) | 
						
							| 37 | 15 4 | sselid |  |-  ( ( ph /\ k e. Z ) -> B e. RR ) | 
						
							| 38 | 36 37 | syldan |  |-  ( ( ph /\ k e. ( M ... n ) ) -> B e. RR ) | 
						
							| 39 | 38 | adantlr |  |-  ( ( ( ph /\ n e. Z ) /\ k e. ( M ... n ) ) -> B e. RR ) | 
						
							| 40 | 32 33 39 | fsumreclf |  |-  ( ( ph /\ n e. Z ) -> sum_ k e. ( M ... n ) B e. RR ) | 
						
							| 41 | 40 | rexrd |  |-  ( ( ph /\ n e. Z ) -> sum_ k e. ( M ... n ) B e. RR* ) | 
						
							| 42 | 29 30 41 | rnmptssd |  |-  ( ph -> ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) C_ RR* ) | 
						
							| 43 |  | supxrcl |  |-  ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) C_ RR* -> sup ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) , RR* , < ) e. RR* ) | 
						
							| 44 | 42 43 | syl |  |-  ( ph -> sup ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) , RR* , < ) e. RR* ) | 
						
							| 45 |  | vex |  |-  y e. _V | 
						
							| 46 | 10 | elrnmpt |  |-  ( y e. _V -> ( y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) <-> E. x e. ( ~P Z i^i Fin ) y = sum_ k e. x B ) ) | 
						
							| 47 | 45 46 | ax-mp |  |-  ( y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) <-> E. x e. ( ~P Z i^i Fin ) y = sum_ k e. x B ) | 
						
							| 48 | 47 | biimpi |  |-  ( y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) -> E. x e. ( ~P Z i^i Fin ) y = sum_ k e. x B ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ph /\ y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) -> E. x e. ( ~P Z i^i Fin ) y = sum_ k e. x B ) | 
						
							| 50 | 2 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ y = sum_ k e. x B ) -> M e. ZZ ) | 
						
							| 51 | 17 | 3ad2ant2 |  |-  ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ y = sum_ k e. x B ) -> x C_ Z ) | 
						
							| 52 | 14 | 3adant3 |  |-  ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ y = sum_ k e. x B ) -> x e. Fin ) | 
						
							| 53 | 50 3 51 52 | uzfissfz |  |-  ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ y = sum_ k e. x B ) -> E. n e. Z x C_ ( M ... n ) ) | 
						
							| 54 |  | nfv |  |-  F/ n ( ph /\ x e. ( ~P Z i^i Fin ) /\ y = sum_ k e. x B ) | 
						
							| 55 |  | nfmpt1 |  |-  F/_ n ( n e. Z |-> sum_ k e. ( M ... n ) B ) | 
						
							| 56 | 55 | nfrn |  |-  F/_ n ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) | 
						
							| 57 |  | nfv |  |-  F/ n y <_ w | 
						
							| 58 | 56 57 | nfrexw |  |-  F/ n E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w | 
						
							| 59 |  | id |  |-  ( n e. Z -> n e. Z ) | 
						
							| 60 |  | sumex |  |-  sum_ k e. ( M ... n ) B e. _V | 
						
							| 61 | 60 | a1i |  |-  ( n e. Z -> sum_ k e. ( M ... n ) B e. _V ) | 
						
							| 62 | 30 | elrnmpt1 |  |-  ( ( n e. Z /\ sum_ k e. ( M ... n ) B e. _V ) -> sum_ k e. ( M ... n ) B e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) ) | 
						
							| 63 | 59 61 62 | syl2anc |  |-  ( n e. Z -> sum_ k e. ( M ... n ) B e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) ) | 
						
							| 64 | 63 | 3ad2ant2 |  |-  ( ( ( ph /\ y = sum_ k e. x B ) /\ n e. Z /\ x C_ ( M ... n ) ) -> sum_ k e. ( M ... n ) B e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) ) | 
						
							| 65 |  | simplr |  |-  ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) -> y = sum_ k e. x B ) | 
						
							| 66 |  | nfcv |  |-  F/_ k y | 
						
							| 67 |  | nfcv |  |-  F/_ k x | 
						
							| 68 | 67 | nfsum1 |  |-  F/_ k sum_ k e. x B | 
						
							| 69 | 66 68 | nfeq |  |-  F/ k y = sum_ k e. x B | 
						
							| 70 | 1 69 | nfan |  |-  F/ k ( ph /\ y = sum_ k e. x B ) | 
						
							| 71 |  | nfv |  |-  F/ k x C_ ( M ... n ) | 
						
							| 72 | 70 71 | nfan |  |-  F/ k ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) | 
						
							| 73 |  | fzfid |  |-  ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) -> ( M ... n ) e. Fin ) | 
						
							| 74 | 38 | ad4ant14 |  |-  ( ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) /\ k e. ( M ... n ) ) -> B e. RR ) | 
						
							| 75 |  | simplll |  |-  ( ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) /\ k e. ( M ... n ) ) -> ph ) | 
						
							| 76 | 35 | adantl |  |-  ( ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) /\ k e. ( M ... n ) ) -> k e. Z ) | 
						
							| 77 |  | 0xr |  |-  0 e. RR* | 
						
							| 78 | 77 | a1i |  |-  ( ( ph /\ k e. Z ) -> 0 e. RR* ) | 
						
							| 79 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 80 | 79 | a1i |  |-  ( ( ph /\ k e. Z ) -> +oo e. RR* ) | 
						
							| 81 |  | icogelb |  |-  ( ( 0 e. RR* /\ +oo e. RR* /\ B e. ( 0 [,) +oo ) ) -> 0 <_ B ) | 
						
							| 82 | 78 80 4 81 | syl3anc |  |-  ( ( ph /\ k e. Z ) -> 0 <_ B ) | 
						
							| 83 | 75 76 82 | syl2anc |  |-  ( ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) /\ k e. ( M ... n ) ) -> 0 <_ B ) | 
						
							| 84 |  | simpr |  |-  ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) -> x C_ ( M ... n ) ) | 
						
							| 85 | 72 73 74 83 84 | fsumlessf |  |-  ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) -> sum_ k e. x B <_ sum_ k e. ( M ... n ) B ) | 
						
							| 86 | 65 85 | eqbrtrd |  |-  ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) -> y <_ sum_ k e. ( M ... n ) B ) | 
						
							| 87 | 86 | 3adant2 |  |-  ( ( ( ph /\ y = sum_ k e. x B ) /\ n e. Z /\ x C_ ( M ... n ) ) -> y <_ sum_ k e. ( M ... n ) B ) | 
						
							| 88 |  | breq2 |  |-  ( w = sum_ k e. ( M ... n ) B -> ( y <_ w <-> y <_ sum_ k e. ( M ... n ) B ) ) | 
						
							| 89 | 88 | rspcev |  |-  ( ( sum_ k e. ( M ... n ) B e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) /\ y <_ sum_ k e. ( M ... n ) B ) -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) | 
						
							| 90 | 64 87 89 | syl2anc |  |-  ( ( ( ph /\ y = sum_ k e. x B ) /\ n e. Z /\ x C_ ( M ... n ) ) -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) | 
						
							| 91 | 90 | 3exp |  |-  ( ( ph /\ y = sum_ k e. x B ) -> ( n e. Z -> ( x C_ ( M ... n ) -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) ) ) | 
						
							| 92 | 91 | 3adant2 |  |-  ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ y = sum_ k e. x B ) -> ( n e. Z -> ( x C_ ( M ... n ) -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) ) ) | 
						
							| 93 | 54 58 92 | rexlimd |  |-  ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ y = sum_ k e. x B ) -> ( E. n e. Z x C_ ( M ... n ) -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) ) | 
						
							| 94 | 53 93 | mpd |  |-  ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ y = sum_ k e. x B ) -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) | 
						
							| 95 | 94 | 3exp |  |-  ( ph -> ( x e. ( ~P Z i^i Fin ) -> ( y = sum_ k e. x B -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) ) ) | 
						
							| 96 | 95 | rexlimdv |  |-  ( ph -> ( E. x e. ( ~P Z i^i Fin ) y = sum_ k e. x B -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) ) | 
						
							| 97 | 96 | imp |  |-  ( ( ph /\ E. x e. ( ~P Z i^i Fin ) y = sum_ k e. x B ) -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) | 
						
							| 98 | 49 97 | syldan |  |-  ( ( ph /\ y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) | 
						
							| 99 | 26 42 98 | suplesup2 |  |-  ( ph -> sup ( ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) , RR* , < ) <_ sup ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) , RR* , < ) ) | 
						
							| 100 | 30 | elrnmpt |  |-  ( y e. _V -> ( y e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) <-> E. n e. Z y = sum_ k e. ( M ... n ) B ) ) | 
						
							| 101 | 45 100 | ax-mp |  |-  ( y e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) <-> E. n e. Z y = sum_ k e. ( M ... n ) B ) | 
						
							| 102 | 101 | biimpi |  |-  ( y e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) -> E. n e. Z y = sum_ k e. ( M ... n ) B ) | 
						
							| 103 | 102 | adantl |  |-  ( ( ph /\ y e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) ) -> E. n e. Z y = sum_ k e. ( M ... n ) B ) | 
						
							| 104 | 35 | ssriv |  |-  ( M ... n ) C_ Z | 
						
							| 105 |  | ovex |  |-  ( M ... n ) e. _V | 
						
							| 106 | 105 | elpw |  |-  ( ( M ... n ) e. ~P Z <-> ( M ... n ) C_ Z ) | 
						
							| 107 | 104 106 | mpbir |  |-  ( M ... n ) e. ~P Z | 
						
							| 108 |  | fzfi |  |-  ( M ... n ) e. Fin | 
						
							| 109 | 107 108 | elini |  |-  ( M ... n ) e. ( ~P Z i^i Fin ) | 
						
							| 110 | 109 | a1i |  |-  ( y = sum_ k e. ( M ... n ) B -> ( M ... n ) e. ( ~P Z i^i Fin ) ) | 
						
							| 111 |  | id |  |-  ( y = sum_ k e. ( M ... n ) B -> y = sum_ k e. ( M ... n ) B ) | 
						
							| 112 |  | sumeq1 |  |-  ( x = ( M ... n ) -> sum_ k e. x B = sum_ k e. ( M ... n ) B ) | 
						
							| 113 | 112 | rspceeqv |  |-  ( ( ( M ... n ) e. ( ~P Z i^i Fin ) /\ y = sum_ k e. ( M ... n ) B ) -> E. x e. ( ~P Z i^i Fin ) y = sum_ k e. x B ) | 
						
							| 114 | 110 111 113 | syl2anc |  |-  ( y = sum_ k e. ( M ... n ) B -> E. x e. ( ~P Z i^i Fin ) y = sum_ k e. x B ) | 
						
							| 115 | 45 | a1i |  |-  ( y = sum_ k e. ( M ... n ) B -> y e. _V ) | 
						
							| 116 | 10 114 115 | elrnmptd |  |-  ( y = sum_ k e. ( M ... n ) B -> y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) | 
						
							| 117 | 116 | 2a1i |  |-  ( ph -> ( n e. Z -> ( y = sum_ k e. ( M ... n ) B -> y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) ) ) | 
						
							| 118 | 117 | rexlimdv |  |-  ( ph -> ( E. n e. Z y = sum_ k e. ( M ... n ) B -> y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) ) | 
						
							| 119 | 118 | adantr |  |-  ( ( ph /\ y e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) ) -> ( E. n e. Z y = sum_ k e. ( M ... n ) B -> y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) ) | 
						
							| 120 | 103 119 | mpd |  |-  ( ( ph /\ y e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) ) -> y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) | 
						
							| 121 | 120 | ralrimiva |  |-  ( ph -> A. y e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) | 
						
							| 122 |  | dfss3 |  |-  ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) C_ ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) <-> A. y e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) | 
						
							| 123 | 121 122 | sylibr |  |-  ( ph -> ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) C_ ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) | 
						
							| 124 |  | supxrss |  |-  ( ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) C_ ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) /\ ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) C_ RR* ) -> sup ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) , RR* , < ) <_ sup ( ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) , RR* , < ) ) | 
						
							| 125 | 123 26 124 | syl2anc |  |-  ( ph -> sup ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) , RR* , < ) <_ sup ( ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) , RR* , < ) ) | 
						
							| 126 | 28 44 99 125 | xrletrid |  |-  ( ph -> sup ( ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) , RR* , < ) = sup ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) , RR* , < ) ) | 
						
							| 127 | 8 126 | eqtrd |  |-  ( ph -> ( sum^ ` ( k e. Z |-> B ) ) = sup ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) , RR* , < ) ) |