| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0reuz.k |
|- F/ k ph |
| 2 |
|
sge0reuz.m |
|- ( ph -> M e. ZZ ) |
| 3 |
|
sge0reuz.z |
|- Z = ( ZZ>= ` M ) |
| 4 |
|
sge0reuz.b |
|- ( ( ph /\ k e. Z ) -> B e. ( 0 [,) +oo ) ) |
| 5 |
3
|
a1i |
|- ( ph -> Z = ( ZZ>= ` M ) ) |
| 6 |
|
fvex |
|- ( ZZ>= ` M ) e. _V |
| 7 |
5 6
|
eqeltrdi |
|- ( ph -> Z e. _V ) |
| 8 |
1 7 4
|
sge0revalmpt |
|- ( ph -> ( sum^ ` ( k e. Z |-> B ) ) = sup ( ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) , RR* , < ) ) |
| 9 |
|
nfv |
|- F/ x ph |
| 10 |
|
eqid |
|- ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) = ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) |
| 11 |
|
nfv |
|- F/ k x e. ( ~P Z i^i Fin ) |
| 12 |
1 11
|
nfan |
|- F/ k ( ph /\ x e. ( ~P Z i^i Fin ) ) |
| 13 |
|
elinel2 |
|- ( x e. ( ~P Z i^i Fin ) -> x e. Fin ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ x e. ( ~P Z i^i Fin ) ) -> x e. Fin ) |
| 15 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 16 |
|
simpll |
|- ( ( ( ph /\ x e. ( ~P Z i^i Fin ) ) /\ k e. x ) -> ph ) |
| 17 |
|
elpwinss |
|- ( x e. ( ~P Z i^i Fin ) -> x C_ Z ) |
| 18 |
17
|
adantr |
|- ( ( x e. ( ~P Z i^i Fin ) /\ k e. x ) -> x C_ Z ) |
| 19 |
|
simpr |
|- ( ( x e. ( ~P Z i^i Fin ) /\ k e. x ) -> k e. x ) |
| 20 |
18 19
|
sseldd |
|- ( ( x e. ( ~P Z i^i Fin ) /\ k e. x ) -> k e. Z ) |
| 21 |
20
|
adantll |
|- ( ( ( ph /\ x e. ( ~P Z i^i Fin ) ) /\ k e. x ) -> k e. Z ) |
| 22 |
16 21 4
|
syl2anc |
|- ( ( ( ph /\ x e. ( ~P Z i^i Fin ) ) /\ k e. x ) -> B e. ( 0 [,) +oo ) ) |
| 23 |
15 22
|
sselid |
|- ( ( ( ph /\ x e. ( ~P Z i^i Fin ) ) /\ k e. x ) -> B e. RR ) |
| 24 |
12 14 23
|
fsumreclf |
|- ( ( ph /\ x e. ( ~P Z i^i Fin ) ) -> sum_ k e. x B e. RR ) |
| 25 |
24
|
rexrd |
|- ( ( ph /\ x e. ( ~P Z i^i Fin ) ) -> sum_ k e. x B e. RR* ) |
| 26 |
9 10 25
|
rnmptssd |
|- ( ph -> ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) C_ RR* ) |
| 27 |
|
supxrcl |
|- ( ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) C_ RR* -> sup ( ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) , RR* , < ) e. RR* ) |
| 28 |
26 27
|
syl |
|- ( ph -> sup ( ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) , RR* , < ) e. RR* ) |
| 29 |
|
nfv |
|- F/ n ph |
| 30 |
|
eqid |
|- ( n e. Z |-> sum_ k e. ( M ... n ) B ) = ( n e. Z |-> sum_ k e. ( M ... n ) B ) |
| 31 |
|
nfv |
|- F/ k n e. Z |
| 32 |
1 31
|
nfan |
|- F/ k ( ph /\ n e. Z ) |
| 33 |
|
fzfid |
|- ( ( ph /\ n e. Z ) -> ( M ... n ) e. Fin ) |
| 34 |
|
elfzuz |
|- ( k e. ( M ... n ) -> k e. ( ZZ>= ` M ) ) |
| 35 |
34 3
|
eleqtrrdi |
|- ( k e. ( M ... n ) -> k e. Z ) |
| 36 |
35
|
adantl |
|- ( ( ph /\ k e. ( M ... n ) ) -> k e. Z ) |
| 37 |
15 4
|
sselid |
|- ( ( ph /\ k e. Z ) -> B e. RR ) |
| 38 |
36 37
|
syldan |
|- ( ( ph /\ k e. ( M ... n ) ) -> B e. RR ) |
| 39 |
38
|
adantlr |
|- ( ( ( ph /\ n e. Z ) /\ k e. ( M ... n ) ) -> B e. RR ) |
| 40 |
32 33 39
|
fsumreclf |
|- ( ( ph /\ n e. Z ) -> sum_ k e. ( M ... n ) B e. RR ) |
| 41 |
40
|
rexrd |
|- ( ( ph /\ n e. Z ) -> sum_ k e. ( M ... n ) B e. RR* ) |
| 42 |
29 30 41
|
rnmptssd |
|- ( ph -> ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) C_ RR* ) |
| 43 |
|
supxrcl |
|- ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) C_ RR* -> sup ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) , RR* , < ) e. RR* ) |
| 44 |
42 43
|
syl |
|- ( ph -> sup ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) , RR* , < ) e. RR* ) |
| 45 |
|
vex |
|- y e. _V |
| 46 |
10
|
elrnmpt |
|- ( y e. _V -> ( y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) <-> E. x e. ( ~P Z i^i Fin ) y = sum_ k e. x B ) ) |
| 47 |
45 46
|
ax-mp |
|- ( y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) <-> E. x e. ( ~P Z i^i Fin ) y = sum_ k e. x B ) |
| 48 |
47
|
biimpi |
|- ( y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) -> E. x e. ( ~P Z i^i Fin ) y = sum_ k e. x B ) |
| 49 |
48
|
adantl |
|- ( ( ph /\ y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) -> E. x e. ( ~P Z i^i Fin ) y = sum_ k e. x B ) |
| 50 |
2
|
3ad2ant1 |
|- ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ y = sum_ k e. x B ) -> M e. ZZ ) |
| 51 |
17
|
3ad2ant2 |
|- ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ y = sum_ k e. x B ) -> x C_ Z ) |
| 52 |
14
|
3adant3 |
|- ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ y = sum_ k e. x B ) -> x e. Fin ) |
| 53 |
50 3 51 52
|
uzfissfz |
|- ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ y = sum_ k e. x B ) -> E. n e. Z x C_ ( M ... n ) ) |
| 54 |
|
nfv |
|- F/ n ( ph /\ x e. ( ~P Z i^i Fin ) /\ y = sum_ k e. x B ) |
| 55 |
|
nfmpt1 |
|- F/_ n ( n e. Z |-> sum_ k e. ( M ... n ) B ) |
| 56 |
55
|
nfrn |
|- F/_ n ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) |
| 57 |
|
nfv |
|- F/ n y <_ w |
| 58 |
56 57
|
nfrexw |
|- F/ n E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w |
| 59 |
|
id |
|- ( n e. Z -> n e. Z ) |
| 60 |
|
sumex |
|- sum_ k e. ( M ... n ) B e. _V |
| 61 |
60
|
a1i |
|- ( n e. Z -> sum_ k e. ( M ... n ) B e. _V ) |
| 62 |
30
|
elrnmpt1 |
|- ( ( n e. Z /\ sum_ k e. ( M ... n ) B e. _V ) -> sum_ k e. ( M ... n ) B e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) ) |
| 63 |
59 61 62
|
syl2anc |
|- ( n e. Z -> sum_ k e. ( M ... n ) B e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) ) |
| 64 |
63
|
3ad2ant2 |
|- ( ( ( ph /\ y = sum_ k e. x B ) /\ n e. Z /\ x C_ ( M ... n ) ) -> sum_ k e. ( M ... n ) B e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) ) |
| 65 |
|
simplr |
|- ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) -> y = sum_ k e. x B ) |
| 66 |
|
nfcv |
|- F/_ k y |
| 67 |
|
nfcv |
|- F/_ k x |
| 68 |
67
|
nfsum1 |
|- F/_ k sum_ k e. x B |
| 69 |
66 68
|
nfeq |
|- F/ k y = sum_ k e. x B |
| 70 |
1 69
|
nfan |
|- F/ k ( ph /\ y = sum_ k e. x B ) |
| 71 |
|
nfv |
|- F/ k x C_ ( M ... n ) |
| 72 |
70 71
|
nfan |
|- F/ k ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) |
| 73 |
|
fzfid |
|- ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) -> ( M ... n ) e. Fin ) |
| 74 |
38
|
ad4ant14 |
|- ( ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) /\ k e. ( M ... n ) ) -> B e. RR ) |
| 75 |
|
simplll |
|- ( ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) /\ k e. ( M ... n ) ) -> ph ) |
| 76 |
35
|
adantl |
|- ( ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) /\ k e. ( M ... n ) ) -> k e. Z ) |
| 77 |
|
0xr |
|- 0 e. RR* |
| 78 |
77
|
a1i |
|- ( ( ph /\ k e. Z ) -> 0 e. RR* ) |
| 79 |
|
pnfxr |
|- +oo e. RR* |
| 80 |
79
|
a1i |
|- ( ( ph /\ k e. Z ) -> +oo e. RR* ) |
| 81 |
|
icogelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ B e. ( 0 [,) +oo ) ) -> 0 <_ B ) |
| 82 |
78 80 4 81
|
syl3anc |
|- ( ( ph /\ k e. Z ) -> 0 <_ B ) |
| 83 |
75 76 82
|
syl2anc |
|- ( ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) /\ k e. ( M ... n ) ) -> 0 <_ B ) |
| 84 |
|
simpr |
|- ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) -> x C_ ( M ... n ) ) |
| 85 |
72 73 74 83 84
|
fsumlessf |
|- ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) -> sum_ k e. x B <_ sum_ k e. ( M ... n ) B ) |
| 86 |
65 85
|
eqbrtrd |
|- ( ( ( ph /\ y = sum_ k e. x B ) /\ x C_ ( M ... n ) ) -> y <_ sum_ k e. ( M ... n ) B ) |
| 87 |
86
|
3adant2 |
|- ( ( ( ph /\ y = sum_ k e. x B ) /\ n e. Z /\ x C_ ( M ... n ) ) -> y <_ sum_ k e. ( M ... n ) B ) |
| 88 |
|
breq2 |
|- ( w = sum_ k e. ( M ... n ) B -> ( y <_ w <-> y <_ sum_ k e. ( M ... n ) B ) ) |
| 89 |
88
|
rspcev |
|- ( ( sum_ k e. ( M ... n ) B e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) /\ y <_ sum_ k e. ( M ... n ) B ) -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) |
| 90 |
64 87 89
|
syl2anc |
|- ( ( ( ph /\ y = sum_ k e. x B ) /\ n e. Z /\ x C_ ( M ... n ) ) -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) |
| 91 |
90
|
3exp |
|- ( ( ph /\ y = sum_ k e. x B ) -> ( n e. Z -> ( x C_ ( M ... n ) -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) ) ) |
| 92 |
91
|
3adant2 |
|- ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ y = sum_ k e. x B ) -> ( n e. Z -> ( x C_ ( M ... n ) -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) ) ) |
| 93 |
54 58 92
|
rexlimd |
|- ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ y = sum_ k e. x B ) -> ( E. n e. Z x C_ ( M ... n ) -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) ) |
| 94 |
53 93
|
mpd |
|- ( ( ph /\ x e. ( ~P Z i^i Fin ) /\ y = sum_ k e. x B ) -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) |
| 95 |
94
|
3exp |
|- ( ph -> ( x e. ( ~P Z i^i Fin ) -> ( y = sum_ k e. x B -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) ) ) |
| 96 |
95
|
rexlimdv |
|- ( ph -> ( E. x e. ( ~P Z i^i Fin ) y = sum_ k e. x B -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) ) |
| 97 |
96
|
imp |
|- ( ( ph /\ E. x e. ( ~P Z i^i Fin ) y = sum_ k e. x B ) -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) |
| 98 |
49 97
|
syldan |
|- ( ( ph /\ y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) -> E. w e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y <_ w ) |
| 99 |
26 42 98
|
suplesup2 |
|- ( ph -> sup ( ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) , RR* , < ) <_ sup ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) , RR* , < ) ) |
| 100 |
30
|
elrnmpt |
|- ( y e. _V -> ( y e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) <-> E. n e. Z y = sum_ k e. ( M ... n ) B ) ) |
| 101 |
45 100
|
ax-mp |
|- ( y e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) <-> E. n e. Z y = sum_ k e. ( M ... n ) B ) |
| 102 |
101
|
biimpi |
|- ( y e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) -> E. n e. Z y = sum_ k e. ( M ... n ) B ) |
| 103 |
102
|
adantl |
|- ( ( ph /\ y e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) ) -> E. n e. Z y = sum_ k e. ( M ... n ) B ) |
| 104 |
35
|
ssriv |
|- ( M ... n ) C_ Z |
| 105 |
|
ovex |
|- ( M ... n ) e. _V |
| 106 |
105
|
elpw |
|- ( ( M ... n ) e. ~P Z <-> ( M ... n ) C_ Z ) |
| 107 |
104 106
|
mpbir |
|- ( M ... n ) e. ~P Z |
| 108 |
|
fzfi |
|- ( M ... n ) e. Fin |
| 109 |
107 108
|
elini |
|- ( M ... n ) e. ( ~P Z i^i Fin ) |
| 110 |
109
|
a1i |
|- ( y = sum_ k e. ( M ... n ) B -> ( M ... n ) e. ( ~P Z i^i Fin ) ) |
| 111 |
|
id |
|- ( y = sum_ k e. ( M ... n ) B -> y = sum_ k e. ( M ... n ) B ) |
| 112 |
|
sumeq1 |
|- ( x = ( M ... n ) -> sum_ k e. x B = sum_ k e. ( M ... n ) B ) |
| 113 |
112
|
rspceeqv |
|- ( ( ( M ... n ) e. ( ~P Z i^i Fin ) /\ y = sum_ k e. ( M ... n ) B ) -> E. x e. ( ~P Z i^i Fin ) y = sum_ k e. x B ) |
| 114 |
110 111 113
|
syl2anc |
|- ( y = sum_ k e. ( M ... n ) B -> E. x e. ( ~P Z i^i Fin ) y = sum_ k e. x B ) |
| 115 |
45
|
a1i |
|- ( y = sum_ k e. ( M ... n ) B -> y e. _V ) |
| 116 |
10 114 115
|
elrnmptd |
|- ( y = sum_ k e. ( M ... n ) B -> y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) |
| 117 |
116
|
2a1i |
|- ( ph -> ( n e. Z -> ( y = sum_ k e. ( M ... n ) B -> y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) ) ) |
| 118 |
117
|
rexlimdv |
|- ( ph -> ( E. n e. Z y = sum_ k e. ( M ... n ) B -> y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) ) |
| 119 |
118
|
adantr |
|- ( ( ph /\ y e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) ) -> ( E. n e. Z y = sum_ k e. ( M ... n ) B -> y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) ) |
| 120 |
103 119
|
mpd |
|- ( ( ph /\ y e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) ) -> y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) |
| 121 |
120
|
ralrimiva |
|- ( ph -> A. y e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) |
| 122 |
|
dfss3 |
|- ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) C_ ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) <-> A. y e. ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) y e. ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) |
| 123 |
121 122
|
sylibr |
|- ( ph -> ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) C_ ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) ) |
| 124 |
|
supxrss |
|- ( ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) C_ ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) /\ ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) C_ RR* ) -> sup ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) , RR* , < ) <_ sup ( ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) , RR* , < ) ) |
| 125 |
123 26 124
|
syl2anc |
|- ( ph -> sup ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) , RR* , < ) <_ sup ( ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) , RR* , < ) ) |
| 126 |
28 44 99 125
|
xrletrid |
|- ( ph -> sup ( ran ( x e. ( ~P Z i^i Fin ) |-> sum_ k e. x B ) , RR* , < ) = sup ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) , RR* , < ) ) |
| 127 |
8 126
|
eqtrd |
|- ( ph -> ( sum^ ` ( k e. Z |-> B ) ) = sup ( ran ( n e. Z |-> sum_ k e. ( M ... n ) B ) , RR* , < ) ) |