| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfsum1.1 |
|- F/_ k A |
| 2 |
|
df-sum |
|- sum_ k e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
| 3 |
|
nfcv |
|- F/_ k ZZ |
| 4 |
|
nfcv |
|- F/_ k ( ZZ>= ` m ) |
| 5 |
1 4
|
nfss |
|- F/ k A C_ ( ZZ>= ` m ) |
| 6 |
|
nfcv |
|- F/_ k m |
| 7 |
|
nfcv |
|- F/_ k + |
| 8 |
1
|
nfcri |
|- F/ k n e. A |
| 9 |
|
nfcsb1v |
|- F/_ k [_ n / k ]_ B |
| 10 |
|
nfcv |
|- F/_ k 0 |
| 11 |
8 9 10
|
nfif |
|- F/_ k if ( n e. A , [_ n / k ]_ B , 0 ) |
| 12 |
3 11
|
nfmpt |
|- F/_ k ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) |
| 13 |
6 7 12
|
nfseq |
|- F/_ k seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) |
| 14 |
|
nfcv |
|- F/_ k ~~> |
| 15 |
|
nfcv |
|- F/_ k x |
| 16 |
13 14 15
|
nfbr |
|- F/ k seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x |
| 17 |
5 16
|
nfan |
|- F/ k ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) |
| 18 |
3 17
|
nfrexw |
|- F/ k E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) |
| 19 |
|
nfcv |
|- F/_ k NN |
| 20 |
|
nfcv |
|- F/_ k f |
| 21 |
|
nfcv |
|- F/_ k ( 1 ... m ) |
| 22 |
20 21 1
|
nff1o |
|- F/ k f : ( 1 ... m ) -1-1-onto-> A |
| 23 |
|
nfcv |
|- F/_ k 1 |
| 24 |
|
nfcsb1v |
|- F/_ k [_ ( f ` n ) / k ]_ B |
| 25 |
19 24
|
nfmpt |
|- F/_ k ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) |
| 26 |
23 7 25
|
nfseq |
|- F/_ k seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) |
| 27 |
26 6
|
nffv |
|- F/_ k ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
| 28 |
27
|
nfeq2 |
|- F/ k x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
| 29 |
22 28
|
nfan |
|- F/ k ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 30 |
29
|
nfex |
|- F/ k E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 31 |
19 30
|
nfrexw |
|- F/ k E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 32 |
18 31
|
nfor |
|- F/ k ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) |
| 33 |
32
|
nfiotaw |
|- F/_ k ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
| 34 |
2 33
|
nfcxfr |
|- F/_ k sum_ k e. A B |