Metamath Proof Explorer


Theorem nfsum1

Description: Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jun-2019)

Ref Expression
Hypothesis nfsum1.1 _ k A
Assertion nfsum1 _ k k A B

Proof

Step Hyp Ref Expression
1 nfsum1.1 _ k A
2 df-sum k A B = ι x | m A m seq m + n if n A n / k B 0 x m f f : 1 m 1-1 onto A x = seq 1 + n f n / k B m
3 nfcv _ k
4 nfcv _ k m
5 1 4 nfss k A m
6 nfcv _ k m
7 nfcv _ k +
8 1 nfcri k n A
9 nfcsb1v _ k n / k B
10 nfcv _ k 0
11 8 9 10 nfif _ k if n A n / k B 0
12 3 11 nfmpt _ k n if n A n / k B 0
13 6 7 12 nfseq _ k seq m + n if n A n / k B 0
14 nfcv _ k
15 nfcv _ k x
16 13 14 15 nfbr k seq m + n if n A n / k B 0 x
17 5 16 nfan k A m seq m + n if n A n / k B 0 x
18 3 17 nfrex k m A m seq m + n if n A n / k B 0 x
19 nfcv _ k
20 nfcv _ k f
21 nfcv _ k 1 m
22 20 21 1 nff1o k f : 1 m 1-1 onto A
23 nfcv _ k 1
24 nfcsb1v _ k f n / k B
25 19 24 nfmpt _ k n f n / k B
26 23 7 25 nfseq _ k seq 1 + n f n / k B
27 26 6 nffv _ k seq 1 + n f n / k B m
28 27 nfeq2 k x = seq 1 + n f n / k B m
29 22 28 nfan k f : 1 m 1-1 onto A x = seq 1 + n f n / k B m
30 29 nfex k f f : 1 m 1-1 onto A x = seq 1 + n f n / k B m
31 19 30 nfrex k m f f : 1 m 1-1 onto A x = seq 1 + n f n / k B m
32 18 31 nfor k m A m seq m + n if n A n / k B 0 x m f f : 1 m 1-1 onto A x = seq 1 + n f n / k B m
33 32 nfiotaw _ k ι x | m A m seq m + n if n A n / k B 0 x m f f : 1 m 1-1 onto A x = seq 1 + n f n / k B m
34 2 33 nfcxfr _ k k A B