Metamath Proof Explorer


Theorem nfsum1

Description: Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jun-2019)

Ref Expression
Hypothesis nfsum1.1 _kA
Assertion nfsum1 _kkAB

Proof

Step Hyp Ref Expression
1 nfsum1.1 _kA
2 df-sum kAB=ιx|mAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBm
3 nfcv _k
4 nfcv _km
5 1 4 nfss kAm
6 nfcv _km
7 nfcv _k+
8 1 nfcri knA
9 nfcsb1v _kn/kB
10 nfcv _k0
11 8 9 10 nfif _kifnAn/kB0
12 3 11 nfmpt _knifnAn/kB0
13 6 7 12 nfseq _kseqm+nifnAn/kB0
14 nfcv _k
15 nfcv _kx
16 13 14 15 nfbr kseqm+nifnAn/kB0x
17 5 16 nfan kAmseqm+nifnAn/kB0x
18 3 17 nfrexw kmAmseqm+nifnAn/kB0x
19 nfcv _k
20 nfcv _kf
21 nfcv _k1m
22 20 21 1 nff1o kf:1m1-1 ontoA
23 nfcv _k1
24 nfcsb1v _kfn/kB
25 19 24 nfmpt _knfn/kB
26 23 7 25 nfseq _kseq1+nfn/kB
27 26 6 nffv _kseq1+nfn/kBm
28 27 nfeq2 kx=seq1+nfn/kBm
29 22 28 nfan kf:1m1-1 ontoAx=seq1+nfn/kBm
30 29 nfex kff:1m1-1 ontoAx=seq1+nfn/kBm
31 19 30 nfrexw kmff:1m1-1 ontoAx=seq1+nfn/kBm
32 18 31 nfor kmAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBm
33 32 nfiotaw _kιx|mAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBm
34 2 33 nfcxfr _kkAB