| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfsum1.1 | ⊢ Ⅎ 𝑘 𝐴 | 
						
							| 2 |  | df-sum | ⊢ Σ 𝑘  ∈  𝐴 𝐵  =  ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  seq 𝑚 (  +  ,  ( 𝑛  ∈  ℤ  ↦  if ( 𝑛  ∈  𝐴 ,  ⦋ 𝑛  /  𝑘 ⦌ 𝐵 ,  0 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 3 |  | nfcv | ⊢ Ⅎ 𝑘 ℤ | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑘 ( ℤ≥ ‘ 𝑚 ) | 
						
							| 5 | 1 4 | nfss | ⊢ Ⅎ 𝑘 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 ) | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑘 𝑚 | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑘  + | 
						
							| 8 | 1 | nfcri | ⊢ Ⅎ 𝑘 𝑛  ∈  𝐴 | 
						
							| 9 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑛  /  𝑘 ⦌ 𝐵 | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑘 0 | 
						
							| 11 | 8 9 10 | nfif | ⊢ Ⅎ 𝑘 if ( 𝑛  ∈  𝐴 ,  ⦋ 𝑛  /  𝑘 ⦌ 𝐵 ,  0 ) | 
						
							| 12 | 3 11 | nfmpt | ⊢ Ⅎ 𝑘 ( 𝑛  ∈  ℤ  ↦  if ( 𝑛  ∈  𝐴 ,  ⦋ 𝑛  /  𝑘 ⦌ 𝐵 ,  0 ) ) | 
						
							| 13 | 6 7 12 | nfseq | ⊢ Ⅎ 𝑘 seq 𝑚 (  +  ,  ( 𝑛  ∈  ℤ  ↦  if ( 𝑛  ∈  𝐴 ,  ⦋ 𝑛  /  𝑘 ⦌ 𝐵 ,  0 ) ) ) | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑘  ⇝ | 
						
							| 15 |  | nfcv | ⊢ Ⅎ 𝑘 𝑥 | 
						
							| 16 | 13 14 15 | nfbr | ⊢ Ⅎ 𝑘 seq 𝑚 (  +  ,  ( 𝑛  ∈  ℤ  ↦  if ( 𝑛  ∈  𝐴 ,  ⦋ 𝑛  /  𝑘 ⦌ 𝐵 ,  0 ) ) )  ⇝  𝑥 | 
						
							| 17 | 5 16 | nfan | ⊢ Ⅎ 𝑘 ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  seq 𝑚 (  +  ,  ( 𝑛  ∈  ℤ  ↦  if ( 𝑛  ∈  𝐴 ,  ⦋ 𝑛  /  𝑘 ⦌ 𝐵 ,  0 ) ) )  ⇝  𝑥 ) | 
						
							| 18 | 3 17 | nfrexw | ⊢ Ⅎ 𝑘 ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  seq 𝑚 (  +  ,  ( 𝑛  ∈  ℤ  ↦  if ( 𝑛  ∈  𝐴 ,  ⦋ 𝑛  /  𝑘 ⦌ 𝐵 ,  0 ) ) )  ⇝  𝑥 ) | 
						
							| 19 |  | nfcv | ⊢ Ⅎ 𝑘 ℕ | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑘 𝑓 | 
						
							| 21 |  | nfcv | ⊢ Ⅎ 𝑘 ( 1 ... 𝑚 ) | 
						
							| 22 | 20 21 1 | nff1o | ⊢ Ⅎ 𝑘 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 | 
						
							| 23 |  | nfcv | ⊢ Ⅎ 𝑘 1 | 
						
							| 24 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 | 
						
							| 25 | 19 24 | nfmpt | ⊢ Ⅎ 𝑘 ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) | 
						
							| 26 | 23 7 25 | nfseq | ⊢ Ⅎ 𝑘 seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 27 | 26 6 | nffv | ⊢ Ⅎ 𝑘 ( seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) | 
						
							| 28 | 27 | nfeq2 | ⊢ Ⅎ 𝑘 𝑥  =  ( seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) | 
						
							| 29 | 22 28 | nfan | ⊢ Ⅎ 𝑘 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) | 
						
							| 30 | 29 | nfex | ⊢ Ⅎ 𝑘 ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) | 
						
							| 31 | 19 30 | nfrexw | ⊢ Ⅎ 𝑘 ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) | 
						
							| 32 | 18 31 | nfor | ⊢ Ⅎ 𝑘 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  seq 𝑚 (  +  ,  ( 𝑛  ∈  ℤ  ↦  if ( 𝑛  ∈  𝐴 ,  ⦋ 𝑛  /  𝑘 ⦌ 𝐵 ,  0 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) | 
						
							| 33 | 32 | nfiotaw | ⊢ Ⅎ 𝑘 ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  seq 𝑚 (  +  ,  ( 𝑛  ∈  ℤ  ↦  if ( 𝑛  ∈  𝐴 ,  ⦋ 𝑛  /  𝑘 ⦌ 𝐵 ,  0 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 34 | 2 33 | nfcxfr | ⊢ Ⅎ 𝑘 Σ 𝑘  ∈  𝐴 𝐵 |