| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uzfissfz.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | uzfissfz.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | uzfissfz.a | ⊢ ( 𝜑  →  𝐴  ⊆  𝑍 ) | 
						
							| 4 |  | uzfissfz.fi | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 5 |  | uzid | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 7 | 2 | a1i | ⊢ ( 𝜑  →  𝑍  =  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝑀 )  =  𝑍 ) | 
						
							| 9 | 6 8 | eleqtrd | ⊢ ( 𝜑  →  𝑀  ∈  𝑍 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  𝑀  ∈  𝑍 ) | 
						
							| 11 |  | id | ⊢ ( 𝐴  =  ∅  →  𝐴  =  ∅ ) | 
						
							| 12 |  | 0ss | ⊢ ∅  ⊆  ( 𝑀 ... 𝑀 ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝐴  =  ∅  →  ∅  ⊆  ( 𝑀 ... 𝑀 ) ) | 
						
							| 14 | 11 13 | eqsstrd | ⊢ ( 𝐴  =  ∅  →  𝐴  ⊆  ( 𝑀 ... 𝑀 ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  𝐴  ⊆  ( 𝑀 ... 𝑀 ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑘  =  𝑀  →  ( 𝑀 ... 𝑘 )  =  ( 𝑀 ... 𝑀 ) ) | 
						
							| 17 | 16 | sseq2d | ⊢ ( 𝑘  =  𝑀  →  ( 𝐴  ⊆  ( 𝑀 ... 𝑘 )  ↔  𝐴  ⊆  ( 𝑀 ... 𝑀 ) ) ) | 
						
							| 18 | 17 | rspcev | ⊢ ( ( 𝑀  ∈  𝑍  ∧  𝐴  ⊆  ( 𝑀 ... 𝑀 ) )  →  ∃ 𝑘  ∈  𝑍 𝐴  ⊆  ( 𝑀 ... 𝑘 ) ) | 
						
							| 19 | 10 15 18 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐴  =  ∅ )  →  ∃ 𝑘  ∈  𝑍 𝐴  ⊆  ( 𝑀 ... 𝑘 ) ) | 
						
							| 20 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  →  𝐴  ⊆  𝑍 ) | 
						
							| 21 |  | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ | 
						
							| 22 | 2 21 | eqsstri | ⊢ 𝑍  ⊆  ℤ | 
						
							| 23 | 22 | a1i | ⊢ ( 𝜑  →  𝑍  ⊆  ℤ ) | 
						
							| 24 | 3 23 | sstrd | ⊢ ( 𝜑  →  𝐴  ⊆  ℤ ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  →  𝐴  ⊆  ℤ ) | 
						
							| 26 | 11 | necon3bi | ⊢ ( ¬  𝐴  =  ∅  →  𝐴  ≠  ∅ ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  →  𝐴  ≠  ∅ ) | 
						
							| 28 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  →  𝐴  ∈  Fin ) | 
						
							| 29 |  | suprfinzcl | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  𝐴 ) | 
						
							| 30 | 25 27 28 29 | syl3anc | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  𝐴 ) | 
						
							| 31 | 20 30 | sseldd | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  𝑍 ) | 
						
							| 32 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  ∧  𝑗  ∈  𝐴 )  →  𝑀  ∈  ℤ ) | 
						
							| 33 | 22 31 | sselid | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℤ ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  ∧  𝑗  ∈  𝐴 )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℤ ) | 
						
							| 35 | 25 | sselda | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  ∧  𝑗  ∈  𝐴 )  →  𝑗  ∈  ℤ ) | 
						
							| 36 | 3 | sselda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  𝑗  ∈  𝑍 ) | 
						
							| 37 | 2 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  𝑍  =  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 38 | 36 37 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 39 |  | eluzle | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ≤  𝑗 ) | 
						
							| 40 | 38 39 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  𝑀  ≤  𝑗 ) | 
						
							| 41 | 40 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  ∧  𝑗  ∈  𝐴 )  →  𝑀  ≤  𝑗 ) | 
						
							| 42 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 43 | 24 42 | sstrdi | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 44 | 43 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  ∧  𝑗  ∈  𝐴 )  →  𝐴  ⊆  ℝ ) | 
						
							| 45 | 27 | adantr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  ∧  𝑗  ∈  𝐴 )  →  𝐴  ≠  ∅ ) | 
						
							| 46 |  | fimaxre2 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ∈  Fin )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 ) | 
						
							| 47 | 43 4 46 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 ) | 
						
							| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  ∧  𝑗  ∈  𝐴 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 ) | 
						
							| 49 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  ∧  𝑗  ∈  𝐴 )  →  𝑗  ∈  𝐴 ) | 
						
							| 50 |  | suprub | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  ∧  𝑗  ∈  𝐴 )  →  𝑗  ≤  sup ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 51 | 44 45 48 49 50 | syl31anc | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  ∧  𝑗  ∈  𝐴 )  →  𝑗  ≤  sup ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 52 | 32 34 35 41 51 | elfzd | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  ∧  𝑗  ∈  𝐴 )  →  𝑗  ∈  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) ) | 
						
							| 53 | 52 | ralrimiva | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  →  ∀ 𝑗  ∈  𝐴 𝑗  ∈  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) ) | 
						
							| 54 |  | dfss3 | ⊢ ( 𝐴  ⊆  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) )  ↔  ∀ 𝑗  ∈  𝐴 𝑗  ∈  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) ) | 
						
							| 55 | 53 54 | sylibr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  →  𝐴  ⊆  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) ) | 
						
							| 56 |  | oveq2 | ⊢ ( 𝑘  =  sup ( 𝐴 ,  ℝ ,   <  )  →  ( 𝑀 ... 𝑘 )  =  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) ) | 
						
							| 57 | 56 | sseq2d | ⊢ ( 𝑘  =  sup ( 𝐴 ,  ℝ ,   <  )  →  ( 𝐴  ⊆  ( 𝑀 ... 𝑘 )  ↔  𝐴  ⊆  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) ) ) | 
						
							| 58 | 57 | rspcev | ⊢ ( ( sup ( 𝐴 ,  ℝ ,   <  )  ∈  𝑍  ∧  𝐴  ⊆  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) )  →  ∃ 𝑘  ∈  𝑍 𝐴  ⊆  ( 𝑀 ... 𝑘 ) ) | 
						
							| 59 | 31 55 58 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  ∅ )  →  ∃ 𝑘  ∈  𝑍 𝐴  ⊆  ( 𝑀 ... 𝑘 ) ) | 
						
							| 60 | 19 59 | pm2.61dan | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  𝑍 𝐴  ⊆  ( 𝑀 ... 𝑘 ) ) |