Metamath Proof Explorer


Theorem sge0reuzb

Description: Value of the generalized sum of uniformly bounded nonnegative reals, when the domain is a set of upper integers. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses sge0reuzb.k 𝑘 𝜑
sge0reuzb.p 𝑥 𝜑
sge0reuzb.m ( 𝜑𝑀 ∈ ℤ )
sge0reuzb.z 𝑍 = ( ℤ𝑀 )
sge0reuzb.b ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
sge0reuzb.x ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥 )
Assertion sge0reuzb ( 𝜑 → ( Σ^ ‘ ( 𝑘𝑍𝐵 ) ) = sup ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ , < ) )

Proof

Step Hyp Ref Expression
1 sge0reuzb.k 𝑘 𝜑
2 sge0reuzb.p 𝑥 𝜑
3 sge0reuzb.m ( 𝜑𝑀 ∈ ℤ )
4 sge0reuzb.z 𝑍 = ( ℤ𝑀 )
5 sge0reuzb.b ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
6 sge0reuzb.x ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥 )
7 1 3 4 5 sge0reuz ( 𝜑 → ( Σ^ ‘ ( 𝑘𝑍𝐵 ) ) = sup ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) )
8 nfv 𝑛 𝜑
9 eqid ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) = ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
10 nfv 𝑘 𝑛𝑍
11 1 10 nfan 𝑘 ( 𝜑𝑛𝑍 )
12 fzfid ( ( 𝜑𝑛𝑍 ) → ( 𝑀 ... 𝑛 ) ∈ Fin )
13 elfzuz ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ ( ℤ𝑀 ) )
14 13 4 eleqtrrdi ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘𝑍 )
15 14 adantl ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑘𝑍 )
16 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
17 16 5 sseldi ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℝ )
18 15 17 syldan ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐵 ∈ ℝ )
19 18 adantlr ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐵 ∈ ℝ )
20 11 12 19 fsumreclf ( ( 𝜑𝑛𝑍 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ ℝ )
21 8 9 20 rnmptssd ( 𝜑 → ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ⊆ ℝ )
22 uzid ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ𝑀 ) )
23 3 22 syl ( 𝜑𝑀 ∈ ( ℤ𝑀 ) )
24 23 4 eleqtrrdi ( 𝜑𝑀𝑍 )
25 eqidd ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 = Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 )
26 oveq2 ( 𝑛 = 𝑀 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑀 ) )
27 26 sumeq1d ( 𝑛 = 𝑀 → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 = Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 )
28 27 rspceeqv ( ( 𝑀𝑍 ∧ Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 = Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 ) → ∃ 𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
29 24 25 28 syl2anc ( 𝜑 → ∃ 𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
30 sumex Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 ∈ V
31 30 a1i ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 ∈ V )
32 9 29 31 elrnmptd ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) )
33 32 ne0d ( 𝜑 → ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ≠ ∅ )
34 vex 𝑦 ∈ V
35 9 elrnmpt ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ↔ ∃ 𝑛𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) )
36 34 35 ax-mp ( 𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ↔ ∃ 𝑛𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
37 36 biimpi ( 𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) → ∃ 𝑛𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
38 37 adantl ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) → ∃ 𝑛𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
39 nfv 𝑛 ( 𝜑𝑥 ∈ ℝ )
40 nfra1 𝑛𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥
41 39 40 nfan 𝑛 ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥 )
42 nfv 𝑛 𝑦𝑥
43 rspa ( ( ∀ 𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥𝑛𝑍 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥 )
44 simpr ( ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) → 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 )
45 simpl ( ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥 )
46 44 45 eqbrtrd ( ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) → 𝑦𝑥 )
47 46 ex ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥 → ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑦𝑥 ) )
48 43 47 syl ( ( ∀ 𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥𝑛𝑍 ) → ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑦𝑥 ) )
49 48 ex ( ∀ 𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥 → ( 𝑛𝑍 → ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑦𝑥 ) ) )
50 49 adantl ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥 ) → ( 𝑛𝑍 → ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑦𝑥 ) ) )
51 41 42 50 rexlimd ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥 ) → ( ∃ 𝑛𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑦𝑥 ) )
52 51 adantr ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) → ( ∃ 𝑛𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑦𝑥 ) )
53 38 52 mpd ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) → 𝑦𝑥 )
54 53 ralrimiva ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥 ) → ∀ 𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦𝑥 )
55 54 ex ( ( 𝜑𝑥 ∈ ℝ ) → ( ∀ 𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥 → ∀ 𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦𝑥 ) )
56 55 ex ( 𝜑 → ( 𝑥 ∈ ℝ → ( ∀ 𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥 → ∀ 𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦𝑥 ) ) )
57 2 56 reximdai ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦𝑥 ) )
58 6 57 mpd ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦𝑥 )
59 supxrre ( ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ⊆ ℝ ∧ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦𝑥 ) → sup ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) = sup ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ , < ) )
60 21 33 58 59 syl3anc ( 𝜑 → sup ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) = sup ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ , < ) )
61 7 60 eqtrd ( 𝜑 → ( Σ^ ‘ ( 𝑘𝑍𝐵 ) ) = sup ( ran ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ , < ) )