| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0reuzb.k |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
sge0reuzb.p |
⊢ Ⅎ 𝑥 𝜑 |
| 3 |
|
sge0reuzb.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
sge0reuzb.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 5 |
|
sge0reuzb.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 6 |
|
sge0reuzb.x |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 ) |
| 7 |
1 3 4 5
|
sge0reuz |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 9 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) = ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
| 10 |
|
nfv |
⊢ Ⅎ 𝑘 𝑛 ∈ 𝑍 |
| 11 |
1 10
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
| 12 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ... 𝑛 ) ∈ Fin ) |
| 13 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 14 |
13 4
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ 𝑍 ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑘 ∈ 𝑍 ) |
| 16 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 17 |
16 5
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 18 |
15 17
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐵 ∈ ℝ ) |
| 19 |
18
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝐵 ∈ ℝ ) |
| 20 |
11 12 19
|
fsumreclf |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ∈ ℝ ) |
| 21 |
8 9 20
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ⊆ ℝ ) |
| 22 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 23 |
3 22
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 24 |
23 4
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 25 |
|
eqidd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 = Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 ) |
| 26 |
|
oveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑀 ) ) |
| 27 |
26
|
sumeq1d |
⊢ ( 𝑛 = 𝑀 → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 = Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 ) |
| 28 |
27
|
rspceeqv |
⊢ ( ( 𝑀 ∈ 𝑍 ∧ Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 = Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 ) → ∃ 𝑛 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
| 29 |
24 25 28
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
| 30 |
|
sumex |
⊢ Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 ∈ V |
| 31 |
30
|
a1i |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 ∈ V ) |
| 32 |
9 29 31
|
elrnmptd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐵 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) |
| 33 |
32
|
ne0d |
⊢ ( 𝜑 → ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ≠ ∅ ) |
| 34 |
|
vex |
⊢ 𝑦 ∈ V |
| 35 |
9
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) |
| 36 |
34 35
|
ax-mp |
⊢ ( 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
| 37 |
36
|
biimpi |
⊢ ( 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) → ∃ 𝑛 ∈ 𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
| 38 |
37
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) → ∃ 𝑛 ∈ 𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
| 39 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ ℝ ) |
| 40 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 |
| 41 |
39 40
|
nfan |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 ) |
| 42 |
|
nfv |
⊢ Ⅎ 𝑛 𝑦 ≤ 𝑥 |
| 43 |
|
rspa |
⊢ ( ( ∀ 𝑛 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 ∧ 𝑛 ∈ 𝑍 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 ) |
| 44 |
|
simpr |
⊢ ( ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 ∧ 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) → 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) |
| 45 |
|
simpl |
⊢ ( ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 ∧ 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 ) |
| 46 |
44 45
|
eqbrtrd |
⊢ ( ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 ∧ 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) → 𝑦 ≤ 𝑥 ) |
| 47 |
46
|
ex |
⊢ ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 → ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → 𝑦 ≤ 𝑥 ) ) |
| 48 |
43 47
|
syl |
⊢ ( ( ∀ 𝑛 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → 𝑦 ≤ 𝑥 ) ) |
| 49 |
48
|
ex |
⊢ ( ∀ 𝑛 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 → ( 𝑛 ∈ 𝑍 → ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → 𝑦 ≤ 𝑥 ) ) ) |
| 50 |
49
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 ) → ( 𝑛 ∈ 𝑍 → ( 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → 𝑦 ≤ 𝑥 ) ) ) |
| 51 |
41 42 50
|
rexlimd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 ) → ( ∃ 𝑛 ∈ 𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → 𝑦 ≤ 𝑥 ) ) |
| 52 |
51
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) → ( ∃ 𝑛 ∈ 𝑍 𝑦 = Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 → 𝑦 ≤ 𝑥 ) ) |
| 53 |
38 52
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 ) ∧ 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ) → 𝑦 ≤ 𝑥 ) |
| 54 |
53
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑛 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 ) → ∀ 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ≤ 𝑥 ) |
| 55 |
54
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑛 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 → ∀ 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ≤ 𝑥 ) ) |
| 56 |
55
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ → ( ∀ 𝑛 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 → ∀ 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ≤ 𝑥 ) ) ) |
| 57 |
2 56
|
reximdai |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ≤ 𝑥 ) ) |
| 58 |
6 57
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ≤ 𝑥 ) |
| 59 |
|
supxrre |
⊢ ( ( ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ⊆ ℝ ∧ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) 𝑦 ≤ 𝑥 ) → sup ( ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ , < ) ) |
| 60 |
21 33 58 59
|
syl3anc |
⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ* , < ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ , < ) ) |
| 61 |
7 60
|
eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) = sup ( ran ( 𝑛 ∈ 𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐵 ) , ℝ , < ) ) |