Step |
Hyp |
Ref |
Expression |
1 |
|
sge0reuzb.k |
|
2 |
|
sge0reuzb.p |
|
3 |
|
sge0reuzb.m |
|
4 |
|
sge0reuzb.z |
|
5 |
|
sge0reuzb.b |
|
6 |
|
sge0reuzb.x |
|
7 |
1 3 4 5
|
sge0reuz |
|
8 |
|
nfv |
|
9 |
|
eqid |
|
10 |
|
nfv |
|
11 |
1 10
|
nfan |
|
12 |
|
fzfid |
|
13 |
|
elfzuz |
|
14 |
13 4
|
eleqtrrdi |
|
15 |
14
|
adantl |
|
16 |
|
rge0ssre |
|
17 |
16 5
|
sselid |
|
18 |
15 17
|
syldan |
|
19 |
18
|
adantlr |
|
20 |
11 12 19
|
fsumreclf |
|
21 |
8 9 20
|
rnmptssd |
|
22 |
|
uzid |
|
23 |
3 22
|
syl |
|
24 |
23 4
|
eleqtrrdi |
|
25 |
|
eqidd |
|
26 |
|
oveq2 |
|
27 |
26
|
sumeq1d |
|
28 |
27
|
rspceeqv |
|
29 |
24 25 28
|
syl2anc |
|
30 |
|
sumex |
|
31 |
30
|
a1i |
|
32 |
9 29 31
|
elrnmptd |
|
33 |
32
|
ne0d |
|
34 |
|
vex |
|
35 |
9
|
elrnmpt |
|
36 |
34 35
|
ax-mp |
|
37 |
36
|
biimpi |
|
38 |
37
|
adantl |
|
39 |
|
nfv |
|
40 |
|
nfra1 |
|
41 |
39 40
|
nfan |
|
42 |
|
nfv |
|
43 |
|
rspa |
|
44 |
|
simpr |
|
45 |
|
simpl |
|
46 |
44 45
|
eqbrtrd |
|
47 |
46
|
ex |
|
48 |
43 47
|
syl |
|
49 |
48
|
ex |
|
50 |
49
|
adantl |
|
51 |
41 42 50
|
rexlimd |
|
52 |
51
|
adantr |
|
53 |
38 52
|
mpd |
|
54 |
53
|
ralrimiva |
|
55 |
54
|
ex |
|
56 |
55
|
ex |
|
57 |
2 56
|
reximdai |
|
58 |
6 57
|
mpd |
|
59 |
|
supxrre |
|
60 |
21 33 58 59
|
syl3anc |
|
61 |
7 60
|
eqtrd |
|