Step |
Hyp |
Ref |
Expression |
1 |
|
sge0seq.m |
|- ( ph -> M e. ZZ ) |
2 |
|
sge0seq.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
sge0seq.f |
|- ( ph -> F : Z --> ( 0 [,) +oo ) ) |
4 |
|
sge0seq.g |
|- G = seq M ( + , F ) |
5 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
6 |
3
|
ffvelrnda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. ( 0 [,) +oo ) ) |
7 |
5 6
|
sselid |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
8 |
|
readdcl |
|- ( ( k e. RR /\ i e. RR ) -> ( k + i ) e. RR ) |
9 |
8
|
adantl |
|- ( ( ph /\ ( k e. RR /\ i e. RR ) ) -> ( k + i ) e. RR ) |
10 |
2 1 7 9
|
seqf |
|- ( ph -> seq M ( + , F ) : Z --> RR ) |
11 |
4
|
a1i |
|- ( ph -> G = seq M ( + , F ) ) |
12 |
11
|
feq1d |
|- ( ph -> ( G : Z --> RR <-> seq M ( + , F ) : Z --> RR ) ) |
13 |
10 12
|
mpbird |
|- ( ph -> G : Z --> RR ) |
14 |
13
|
frnd |
|- ( ph -> ran G C_ RR ) |
15 |
|
ressxr |
|- RR C_ RR* |
16 |
15
|
a1i |
|- ( ph -> RR C_ RR* ) |
17 |
14 16
|
sstrd |
|- ( ph -> ran G C_ RR* ) |
18 |
2
|
fvexi |
|- Z e. _V |
19 |
18
|
a1i |
|- ( ph -> Z e. _V ) |
20 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
21 |
20
|
a1i |
|- ( ph -> ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) |
22 |
3 21
|
fssd |
|- ( ph -> F : Z --> ( 0 [,] +oo ) ) |
23 |
19 22
|
sge0xrcl |
|- ( ph -> ( sum^ ` F ) e. RR* ) |
24 |
|
simpr |
|- ( ( ph /\ z e. ran G ) -> z e. ran G ) |
25 |
13
|
ffnd |
|- ( ph -> G Fn Z ) |
26 |
|
fvelrnb |
|- ( G Fn Z -> ( z e. ran G <-> E. j e. Z ( G ` j ) = z ) ) |
27 |
25 26
|
syl |
|- ( ph -> ( z e. ran G <-> E. j e. Z ( G ` j ) = z ) ) |
28 |
27
|
adantr |
|- ( ( ph /\ z e. ran G ) -> ( z e. ran G <-> E. j e. Z ( G ` j ) = z ) ) |
29 |
24 28
|
mpbid |
|- ( ( ph /\ z e. ran G ) -> E. j e. Z ( G ` j ) = z ) |
30 |
20 6
|
sselid |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. ( 0 [,] +oo ) ) |
31 |
|
elfzuz |
|- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
32 |
31 2
|
eleqtrrdi |
|- ( k e. ( M ... j ) -> k e. Z ) |
33 |
32
|
ssriv |
|- ( M ... j ) C_ Z |
34 |
33
|
a1i |
|- ( ph -> ( M ... j ) C_ Z ) |
35 |
19 30 34
|
sge0lessmpt |
|- ( ph -> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) <_ ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
36 |
35
|
3ad2ant1 |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) <_ ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
37 |
|
fzfid |
|- ( ph -> ( M ... j ) e. Fin ) |
38 |
32 6
|
sylan2 |
|- ( ( ph /\ k e. ( M ... j ) ) -> ( F ` k ) e. ( 0 [,) +oo ) ) |
39 |
37 38
|
sge0fsummpt |
|- ( ph -> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) = sum_ k e. ( M ... j ) ( F ` k ) ) |
40 |
39
|
3ad2ant1 |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) = sum_ k e. ( M ... j ) ( F ` k ) ) |
41 |
|
simpll |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ph ) |
42 |
32
|
adantl |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> k e. Z ) |
43 |
|
eqidd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) |
44 |
41 42 43
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) = ( F ` k ) ) |
45 |
2
|
eleq2i |
|- ( j e. Z <-> j e. ( ZZ>= ` M ) ) |
46 |
45
|
biimpi |
|- ( j e. Z -> j e. ( ZZ>= ` M ) ) |
47 |
46
|
adantl |
|- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
48 |
7
|
recnd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
49 |
41 42 48
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
50 |
44 47 49
|
fsumser |
|- ( ( ph /\ j e. Z ) -> sum_ k e. ( M ... j ) ( F ` k ) = ( seq M ( + , F ) ` j ) ) |
51 |
50
|
3adant3 |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> sum_ k e. ( M ... j ) ( F ` k ) = ( seq M ( + , F ) ` j ) ) |
52 |
40 51
|
eqtrd |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) = ( seq M ( + , F ) ` j ) ) |
53 |
4
|
eqcomi |
|- seq M ( + , F ) = G |
54 |
53
|
fveq1i |
|- ( seq M ( + , F ) ` j ) = ( G ` j ) |
55 |
54
|
a1i |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( seq M ( + , F ) ` j ) = ( G ` j ) ) |
56 |
|
simp3 |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( G ` j ) = z ) |
57 |
52 55 56
|
3eqtrrd |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> z = ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) ) |
58 |
3
|
feqmptd |
|- ( ph -> F = ( k e. Z |-> ( F ` k ) ) ) |
59 |
58
|
fveq2d |
|- ( ph -> ( sum^ ` F ) = ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
60 |
59
|
3ad2ant1 |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( sum^ ` F ) = ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
61 |
57 60
|
breq12d |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( z <_ ( sum^ ` F ) <-> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) <_ ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) ) |
62 |
36 61
|
mpbird |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> z <_ ( sum^ ` F ) ) |
63 |
62
|
3exp |
|- ( ph -> ( j e. Z -> ( ( G ` j ) = z -> z <_ ( sum^ ` F ) ) ) ) |
64 |
63
|
adantr |
|- ( ( ph /\ z e. ran G ) -> ( j e. Z -> ( ( G ` j ) = z -> z <_ ( sum^ ` F ) ) ) ) |
65 |
64
|
rexlimdv |
|- ( ( ph /\ z e. ran G ) -> ( E. j e. Z ( G ` j ) = z -> z <_ ( sum^ ` F ) ) ) |
66 |
29 65
|
mpd |
|- ( ( ph /\ z e. ran G ) -> z <_ ( sum^ ` F ) ) |
67 |
66
|
ralrimiva |
|- ( ph -> A. z e. ran G z <_ ( sum^ ` F ) ) |
68 |
|
nfv |
|- F/ k ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) |
69 |
18
|
a1i |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> Z e. _V ) |
70 |
6
|
ad4ant14 |
|- ( ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) /\ k e. Z ) -> ( F ` k ) e. ( 0 [,) +oo ) ) |
71 |
|
simplr |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> z e. RR ) |
72 |
|
simpr |
|- ( ( ph /\ z < ( sum^ ` F ) ) -> z < ( sum^ ` F ) ) |
73 |
59
|
adantr |
|- ( ( ph /\ z < ( sum^ ` F ) ) -> ( sum^ ` F ) = ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
74 |
72 73
|
breqtrd |
|- ( ( ph /\ z < ( sum^ ` F ) ) -> z < ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
75 |
74
|
adantlr |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> z < ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
76 |
68 69 70 71 75
|
sge0gtfsumgt |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> E. w e. ( ~P Z i^i Fin ) z < sum_ k e. w ( F ` k ) ) |
77 |
1
|
3ad2ant1 |
|- ( ( ph /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) -> M e. ZZ ) |
78 |
|
elpwinss |
|- ( w e. ( ~P Z i^i Fin ) -> w C_ Z ) |
79 |
78
|
3ad2ant2 |
|- ( ( ph /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) -> w C_ Z ) |
80 |
|
elinel2 |
|- ( w e. ( ~P Z i^i Fin ) -> w e. Fin ) |
81 |
80
|
3ad2ant2 |
|- ( ( ph /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) -> w e. Fin ) |
82 |
77 2 79 81
|
uzfissfz |
|- ( ( ph /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) -> E. j e. Z w C_ ( M ... j ) ) |
83 |
82
|
3adant1r |
|- ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) -> E. j e. Z w C_ ( M ... j ) ) |
84 |
|
simpl1r |
|- ( ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) /\ w C_ ( M ... j ) ) -> z e. RR ) |
85 |
80
|
adantl |
|- ( ( ph /\ w e. ( ~P Z i^i Fin ) ) -> w e. Fin ) |
86 |
58 7
|
fmpt3d |
|- ( ph -> F : Z --> RR ) |
87 |
86
|
ad2antrr |
|- ( ( ( ph /\ w e. ( ~P Z i^i Fin ) ) /\ k e. w ) -> F : Z --> RR ) |
88 |
78
|
sselda |
|- ( ( w e. ( ~P Z i^i Fin ) /\ k e. w ) -> k e. Z ) |
89 |
88
|
adantll |
|- ( ( ( ph /\ w e. ( ~P Z i^i Fin ) ) /\ k e. w ) -> k e. Z ) |
90 |
87 89
|
ffvelrnd |
|- ( ( ( ph /\ w e. ( ~P Z i^i Fin ) ) /\ k e. w ) -> ( F ` k ) e. RR ) |
91 |
85 90
|
fsumrecl |
|- ( ( ph /\ w e. ( ~P Z i^i Fin ) ) -> sum_ k e. w ( F ` k ) e. RR ) |
92 |
91
|
ad4ant13 |
|- ( ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) ) /\ w C_ ( M ... j ) ) -> sum_ k e. w ( F ` k ) e. RR ) |
93 |
92
|
3adantl3 |
|- ( ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) /\ w C_ ( M ... j ) ) -> sum_ k e. w ( F ` k ) e. RR ) |
94 |
32 7
|
sylan2 |
|- ( ( ph /\ k e. ( M ... j ) ) -> ( F ` k ) e. RR ) |
95 |
37 94
|
fsumrecl |
|- ( ph -> sum_ k e. ( M ... j ) ( F ` k ) e. RR ) |
96 |
95
|
ad3antrrr |
|- ( ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) ) /\ w C_ ( M ... j ) ) -> sum_ k e. ( M ... j ) ( F ` k ) e. RR ) |
97 |
96
|
3adantl3 |
|- ( ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) /\ w C_ ( M ... j ) ) -> sum_ k e. ( M ... j ) ( F ` k ) e. RR ) |
98 |
|
simpl3 |
|- ( ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) /\ w C_ ( M ... j ) ) -> z < sum_ k e. w ( F ` k ) ) |
99 |
37
|
adantr |
|- ( ( ph /\ w C_ ( M ... j ) ) -> ( M ... j ) e. Fin ) |
100 |
94
|
adantlr |
|- ( ( ( ph /\ w C_ ( M ... j ) ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. RR ) |
101 |
|
0xr |
|- 0 e. RR* |
102 |
101
|
a1i |
|- ( ( ph /\ k e. Z ) -> 0 e. RR* ) |
103 |
|
pnfxr |
|- +oo e. RR* |
104 |
103
|
a1i |
|- ( ( ph /\ k e. Z ) -> +oo e. RR* ) |
105 |
|
icogelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ ( F ` k ) e. ( 0 [,) +oo ) ) -> 0 <_ ( F ` k ) ) |
106 |
102 104 6 105
|
syl3anc |
|- ( ( ph /\ k e. Z ) -> 0 <_ ( F ` k ) ) |
107 |
32 106
|
sylan2 |
|- ( ( ph /\ k e. ( M ... j ) ) -> 0 <_ ( F ` k ) ) |
108 |
107
|
adantlr |
|- ( ( ( ph /\ w C_ ( M ... j ) ) /\ k e. ( M ... j ) ) -> 0 <_ ( F ` k ) ) |
109 |
|
simpr |
|- ( ( ph /\ w C_ ( M ... j ) ) -> w C_ ( M ... j ) ) |
110 |
99 100 108 109
|
fsumless |
|- ( ( ph /\ w C_ ( M ... j ) ) -> sum_ k e. w ( F ` k ) <_ sum_ k e. ( M ... j ) ( F ` k ) ) |
111 |
110
|
adantlr |
|- ( ( ( ph /\ z e. RR ) /\ w C_ ( M ... j ) ) -> sum_ k e. w ( F ` k ) <_ sum_ k e. ( M ... j ) ( F ` k ) ) |
112 |
111
|
3ad2antl1 |
|- ( ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) /\ w C_ ( M ... j ) ) -> sum_ k e. w ( F ` k ) <_ sum_ k e. ( M ... j ) ( F ` k ) ) |
113 |
84 93 97 98 112
|
ltletrd |
|- ( ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) /\ w C_ ( M ... j ) ) -> z < sum_ k e. ( M ... j ) ( F ` k ) ) |
114 |
113
|
ex |
|- ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) -> ( w C_ ( M ... j ) -> z < sum_ k e. ( M ... j ) ( F ` k ) ) ) |
115 |
114
|
reximdv |
|- ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) -> ( E. j e. Z w C_ ( M ... j ) -> E. j e. Z z < sum_ k e. ( M ... j ) ( F ` k ) ) ) |
116 |
83 115
|
mpd |
|- ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) -> E. j e. Z z < sum_ k e. ( M ... j ) ( F ` k ) ) |
117 |
116
|
3exp |
|- ( ( ph /\ z e. RR ) -> ( w e. ( ~P Z i^i Fin ) -> ( z < sum_ k e. w ( F ` k ) -> E. j e. Z z < sum_ k e. ( M ... j ) ( F ` k ) ) ) ) |
118 |
117
|
adantr |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> ( w e. ( ~P Z i^i Fin ) -> ( z < sum_ k e. w ( F ` k ) -> E. j e. Z z < sum_ k e. ( M ... j ) ( F ` k ) ) ) ) |
119 |
118
|
rexlimdv |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> ( E. w e. ( ~P Z i^i Fin ) z < sum_ k e. w ( F ` k ) -> E. j e. Z z < sum_ k e. ( M ... j ) ( F ` k ) ) ) |
120 |
76 119
|
mpd |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> E. j e. Z z < sum_ k e. ( M ... j ) ( F ` k ) ) |
121 |
10
|
ffnd |
|- ( ph -> seq M ( + , F ) Fn Z ) |
122 |
121
|
adantr |
|- ( ( ph /\ j e. Z ) -> seq M ( + , F ) Fn Z ) |
123 |
47 45
|
sylibr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
124 |
|
fnfvelrn |
|- ( ( seq M ( + , F ) Fn Z /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. ran seq M ( + , F ) ) |
125 |
122 123 124
|
syl2anc |
|- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. ran seq M ( + , F ) ) |
126 |
4
|
a1i |
|- ( ( ph /\ j e. Z ) -> G = seq M ( + , F ) ) |
127 |
126
|
rneqd |
|- ( ( ph /\ j e. Z ) -> ran G = ran seq M ( + , F ) ) |
128 |
50 127
|
eleq12d |
|- ( ( ph /\ j e. Z ) -> ( sum_ k e. ( M ... j ) ( F ` k ) e. ran G <-> ( seq M ( + , F ) ` j ) e. ran seq M ( + , F ) ) ) |
129 |
125 128
|
mpbird |
|- ( ( ph /\ j e. Z ) -> sum_ k e. ( M ... j ) ( F ` k ) e. ran G ) |
130 |
129
|
adantlr |
|- ( ( ( ph /\ z e. RR ) /\ j e. Z ) -> sum_ k e. ( M ... j ) ( F ` k ) e. ran G ) |
131 |
130
|
3adant3 |
|- ( ( ( ph /\ z e. RR ) /\ j e. Z /\ z < sum_ k e. ( M ... j ) ( F ` k ) ) -> sum_ k e. ( M ... j ) ( F ` k ) e. ran G ) |
132 |
|
simp3 |
|- ( ( ( ph /\ z e. RR ) /\ j e. Z /\ z < sum_ k e. ( M ... j ) ( F ` k ) ) -> z < sum_ k e. ( M ... j ) ( F ` k ) ) |
133 |
|
breq2 |
|- ( y = sum_ k e. ( M ... j ) ( F ` k ) -> ( z < y <-> z < sum_ k e. ( M ... j ) ( F ` k ) ) ) |
134 |
133
|
rspcev |
|- ( ( sum_ k e. ( M ... j ) ( F ` k ) e. ran G /\ z < sum_ k e. ( M ... j ) ( F ` k ) ) -> E. y e. ran G z < y ) |
135 |
131 132 134
|
syl2anc |
|- ( ( ( ph /\ z e. RR ) /\ j e. Z /\ z < sum_ k e. ( M ... j ) ( F ` k ) ) -> E. y e. ran G z < y ) |
136 |
135
|
3exp |
|- ( ( ph /\ z e. RR ) -> ( j e. Z -> ( z < sum_ k e. ( M ... j ) ( F ` k ) -> E. y e. ran G z < y ) ) ) |
137 |
136
|
rexlimdv |
|- ( ( ph /\ z e. RR ) -> ( E. j e. Z z < sum_ k e. ( M ... j ) ( F ` k ) -> E. y e. ran G z < y ) ) |
138 |
137
|
adantr |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> ( E. j e. Z z < sum_ k e. ( M ... j ) ( F ` k ) -> E. y e. ran G z < y ) ) |
139 |
120 138
|
mpd |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> E. y e. ran G z < y ) |
140 |
139
|
ex |
|- ( ( ph /\ z e. RR ) -> ( z < ( sum^ ` F ) -> E. y e. ran G z < y ) ) |
141 |
140
|
ralrimiva |
|- ( ph -> A. z e. RR ( z < ( sum^ ` F ) -> E. y e. ran G z < y ) ) |
142 |
|
supxr2 |
|- ( ( ( ran G C_ RR* /\ ( sum^ ` F ) e. RR* ) /\ ( A. z e. ran G z <_ ( sum^ ` F ) /\ A. z e. RR ( z < ( sum^ ` F ) -> E. y e. ran G z < y ) ) ) -> sup ( ran G , RR* , < ) = ( sum^ ` F ) ) |
143 |
17 23 67 141 142
|
syl22anc |
|- ( ph -> sup ( ran G , RR* , < ) = ( sum^ ` F ) ) |
144 |
143
|
eqcomd |
|- ( ph -> ( sum^ ` F ) = sup ( ran G , RR* , < ) ) |