| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0seq.m |
|- ( ph -> M e. ZZ ) |
| 2 |
|
sge0seq.z |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
sge0seq.f |
|- ( ph -> F : Z --> ( 0 [,) +oo ) ) |
| 4 |
|
sge0seq.g |
|- G = seq M ( + , F ) |
| 5 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 6 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. ( 0 [,) +oo ) ) |
| 7 |
5 6
|
sselid |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 8 |
|
readdcl |
|- ( ( k e. RR /\ i e. RR ) -> ( k + i ) e. RR ) |
| 9 |
8
|
adantl |
|- ( ( ph /\ ( k e. RR /\ i e. RR ) ) -> ( k + i ) e. RR ) |
| 10 |
2 1 7 9
|
seqf |
|- ( ph -> seq M ( + , F ) : Z --> RR ) |
| 11 |
4
|
a1i |
|- ( ph -> G = seq M ( + , F ) ) |
| 12 |
11
|
feq1d |
|- ( ph -> ( G : Z --> RR <-> seq M ( + , F ) : Z --> RR ) ) |
| 13 |
10 12
|
mpbird |
|- ( ph -> G : Z --> RR ) |
| 14 |
13
|
frnd |
|- ( ph -> ran G C_ RR ) |
| 15 |
|
ressxr |
|- RR C_ RR* |
| 16 |
15
|
a1i |
|- ( ph -> RR C_ RR* ) |
| 17 |
14 16
|
sstrd |
|- ( ph -> ran G C_ RR* ) |
| 18 |
2
|
fvexi |
|- Z e. _V |
| 19 |
18
|
a1i |
|- ( ph -> Z e. _V ) |
| 20 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 21 |
20
|
a1i |
|- ( ph -> ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) |
| 22 |
3 21
|
fssd |
|- ( ph -> F : Z --> ( 0 [,] +oo ) ) |
| 23 |
19 22
|
sge0xrcl |
|- ( ph -> ( sum^ ` F ) e. RR* ) |
| 24 |
|
simpr |
|- ( ( ph /\ z e. ran G ) -> z e. ran G ) |
| 25 |
13
|
ffnd |
|- ( ph -> G Fn Z ) |
| 26 |
|
fvelrnb |
|- ( G Fn Z -> ( z e. ran G <-> E. j e. Z ( G ` j ) = z ) ) |
| 27 |
25 26
|
syl |
|- ( ph -> ( z e. ran G <-> E. j e. Z ( G ` j ) = z ) ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ z e. ran G ) -> ( z e. ran G <-> E. j e. Z ( G ` j ) = z ) ) |
| 29 |
24 28
|
mpbid |
|- ( ( ph /\ z e. ran G ) -> E. j e. Z ( G ` j ) = z ) |
| 30 |
20 6
|
sselid |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. ( 0 [,] +oo ) ) |
| 31 |
|
elfzuz |
|- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
| 32 |
31 2
|
eleqtrrdi |
|- ( k e. ( M ... j ) -> k e. Z ) |
| 33 |
32
|
ssriv |
|- ( M ... j ) C_ Z |
| 34 |
33
|
a1i |
|- ( ph -> ( M ... j ) C_ Z ) |
| 35 |
19 30 34
|
sge0lessmpt |
|- ( ph -> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) <_ ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
| 36 |
35
|
3ad2ant1 |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) <_ ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
| 37 |
|
fzfid |
|- ( ph -> ( M ... j ) e. Fin ) |
| 38 |
32 6
|
sylan2 |
|- ( ( ph /\ k e. ( M ... j ) ) -> ( F ` k ) e. ( 0 [,) +oo ) ) |
| 39 |
37 38
|
sge0fsummpt |
|- ( ph -> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) = sum_ k e. ( M ... j ) ( F ` k ) ) |
| 40 |
39
|
3ad2ant1 |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) = sum_ k e. ( M ... j ) ( F ` k ) ) |
| 41 |
|
simpll |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ph ) |
| 42 |
32
|
adantl |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> k e. Z ) |
| 43 |
|
eqidd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) |
| 44 |
41 42 43
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) = ( F ` k ) ) |
| 45 |
2
|
eleq2i |
|- ( j e. Z <-> j e. ( ZZ>= ` M ) ) |
| 46 |
45
|
biimpi |
|- ( j e. Z -> j e. ( ZZ>= ` M ) ) |
| 47 |
46
|
adantl |
|- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
| 48 |
7
|
recnd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 49 |
41 42 48
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
| 50 |
44 47 49
|
fsumser |
|- ( ( ph /\ j e. Z ) -> sum_ k e. ( M ... j ) ( F ` k ) = ( seq M ( + , F ) ` j ) ) |
| 51 |
50
|
3adant3 |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> sum_ k e. ( M ... j ) ( F ` k ) = ( seq M ( + , F ) ` j ) ) |
| 52 |
40 51
|
eqtrd |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) = ( seq M ( + , F ) ` j ) ) |
| 53 |
4
|
eqcomi |
|- seq M ( + , F ) = G |
| 54 |
53
|
fveq1i |
|- ( seq M ( + , F ) ` j ) = ( G ` j ) |
| 55 |
54
|
a1i |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( seq M ( + , F ) ` j ) = ( G ` j ) ) |
| 56 |
|
simp3 |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( G ` j ) = z ) |
| 57 |
52 55 56
|
3eqtrrd |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> z = ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) ) |
| 58 |
3
|
feqmptd |
|- ( ph -> F = ( k e. Z |-> ( F ` k ) ) ) |
| 59 |
58
|
fveq2d |
|- ( ph -> ( sum^ ` F ) = ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
| 60 |
59
|
3ad2ant1 |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( sum^ ` F ) = ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
| 61 |
57 60
|
breq12d |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( z <_ ( sum^ ` F ) <-> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) <_ ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) ) |
| 62 |
36 61
|
mpbird |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> z <_ ( sum^ ` F ) ) |
| 63 |
62
|
3exp |
|- ( ph -> ( j e. Z -> ( ( G ` j ) = z -> z <_ ( sum^ ` F ) ) ) ) |
| 64 |
63
|
adantr |
|- ( ( ph /\ z e. ran G ) -> ( j e. Z -> ( ( G ` j ) = z -> z <_ ( sum^ ` F ) ) ) ) |
| 65 |
64
|
rexlimdv |
|- ( ( ph /\ z e. ran G ) -> ( E. j e. Z ( G ` j ) = z -> z <_ ( sum^ ` F ) ) ) |
| 66 |
29 65
|
mpd |
|- ( ( ph /\ z e. ran G ) -> z <_ ( sum^ ` F ) ) |
| 67 |
66
|
ralrimiva |
|- ( ph -> A. z e. ran G z <_ ( sum^ ` F ) ) |
| 68 |
|
nfv |
|- F/ k ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) |
| 69 |
18
|
a1i |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> Z e. _V ) |
| 70 |
6
|
ad4ant14 |
|- ( ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) /\ k e. Z ) -> ( F ` k ) e. ( 0 [,) +oo ) ) |
| 71 |
|
simplr |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> z e. RR ) |
| 72 |
|
simpr |
|- ( ( ph /\ z < ( sum^ ` F ) ) -> z < ( sum^ ` F ) ) |
| 73 |
59
|
adantr |
|- ( ( ph /\ z < ( sum^ ` F ) ) -> ( sum^ ` F ) = ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
| 74 |
72 73
|
breqtrd |
|- ( ( ph /\ z < ( sum^ ` F ) ) -> z < ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
| 75 |
74
|
adantlr |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> z < ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
| 76 |
68 69 70 71 75
|
sge0gtfsumgt |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> E. w e. ( ~P Z i^i Fin ) z < sum_ k e. w ( F ` k ) ) |
| 77 |
1
|
3ad2ant1 |
|- ( ( ph /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) -> M e. ZZ ) |
| 78 |
|
elpwinss |
|- ( w e. ( ~P Z i^i Fin ) -> w C_ Z ) |
| 79 |
78
|
3ad2ant2 |
|- ( ( ph /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) -> w C_ Z ) |
| 80 |
|
elinel2 |
|- ( w e. ( ~P Z i^i Fin ) -> w e. Fin ) |
| 81 |
80
|
3ad2ant2 |
|- ( ( ph /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) -> w e. Fin ) |
| 82 |
77 2 79 81
|
uzfissfz |
|- ( ( ph /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) -> E. j e. Z w C_ ( M ... j ) ) |
| 83 |
82
|
3adant1r |
|- ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) -> E. j e. Z w C_ ( M ... j ) ) |
| 84 |
|
simpl1r |
|- ( ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) /\ w C_ ( M ... j ) ) -> z e. RR ) |
| 85 |
80
|
adantl |
|- ( ( ph /\ w e. ( ~P Z i^i Fin ) ) -> w e. Fin ) |
| 86 |
58 7
|
fmpt3d |
|- ( ph -> F : Z --> RR ) |
| 87 |
86
|
ad2antrr |
|- ( ( ( ph /\ w e. ( ~P Z i^i Fin ) ) /\ k e. w ) -> F : Z --> RR ) |
| 88 |
78
|
sselda |
|- ( ( w e. ( ~P Z i^i Fin ) /\ k e. w ) -> k e. Z ) |
| 89 |
88
|
adantll |
|- ( ( ( ph /\ w e. ( ~P Z i^i Fin ) ) /\ k e. w ) -> k e. Z ) |
| 90 |
87 89
|
ffvelcdmd |
|- ( ( ( ph /\ w e. ( ~P Z i^i Fin ) ) /\ k e. w ) -> ( F ` k ) e. RR ) |
| 91 |
85 90
|
fsumrecl |
|- ( ( ph /\ w e. ( ~P Z i^i Fin ) ) -> sum_ k e. w ( F ` k ) e. RR ) |
| 92 |
91
|
ad4ant13 |
|- ( ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) ) /\ w C_ ( M ... j ) ) -> sum_ k e. w ( F ` k ) e. RR ) |
| 93 |
92
|
3adantl3 |
|- ( ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) /\ w C_ ( M ... j ) ) -> sum_ k e. w ( F ` k ) e. RR ) |
| 94 |
32 7
|
sylan2 |
|- ( ( ph /\ k e. ( M ... j ) ) -> ( F ` k ) e. RR ) |
| 95 |
37 94
|
fsumrecl |
|- ( ph -> sum_ k e. ( M ... j ) ( F ` k ) e. RR ) |
| 96 |
95
|
ad3antrrr |
|- ( ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) ) /\ w C_ ( M ... j ) ) -> sum_ k e. ( M ... j ) ( F ` k ) e. RR ) |
| 97 |
96
|
3adantl3 |
|- ( ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) /\ w C_ ( M ... j ) ) -> sum_ k e. ( M ... j ) ( F ` k ) e. RR ) |
| 98 |
|
simpl3 |
|- ( ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) /\ w C_ ( M ... j ) ) -> z < sum_ k e. w ( F ` k ) ) |
| 99 |
37
|
adantr |
|- ( ( ph /\ w C_ ( M ... j ) ) -> ( M ... j ) e. Fin ) |
| 100 |
94
|
adantlr |
|- ( ( ( ph /\ w C_ ( M ... j ) ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. RR ) |
| 101 |
|
0xr |
|- 0 e. RR* |
| 102 |
101
|
a1i |
|- ( ( ph /\ k e. Z ) -> 0 e. RR* ) |
| 103 |
|
pnfxr |
|- +oo e. RR* |
| 104 |
103
|
a1i |
|- ( ( ph /\ k e. Z ) -> +oo e. RR* ) |
| 105 |
|
icogelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ ( F ` k ) e. ( 0 [,) +oo ) ) -> 0 <_ ( F ` k ) ) |
| 106 |
102 104 6 105
|
syl3anc |
|- ( ( ph /\ k e. Z ) -> 0 <_ ( F ` k ) ) |
| 107 |
32 106
|
sylan2 |
|- ( ( ph /\ k e. ( M ... j ) ) -> 0 <_ ( F ` k ) ) |
| 108 |
107
|
adantlr |
|- ( ( ( ph /\ w C_ ( M ... j ) ) /\ k e. ( M ... j ) ) -> 0 <_ ( F ` k ) ) |
| 109 |
|
simpr |
|- ( ( ph /\ w C_ ( M ... j ) ) -> w C_ ( M ... j ) ) |
| 110 |
99 100 108 109
|
fsumless |
|- ( ( ph /\ w C_ ( M ... j ) ) -> sum_ k e. w ( F ` k ) <_ sum_ k e. ( M ... j ) ( F ` k ) ) |
| 111 |
110
|
adantlr |
|- ( ( ( ph /\ z e. RR ) /\ w C_ ( M ... j ) ) -> sum_ k e. w ( F ` k ) <_ sum_ k e. ( M ... j ) ( F ` k ) ) |
| 112 |
111
|
3ad2antl1 |
|- ( ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) /\ w C_ ( M ... j ) ) -> sum_ k e. w ( F ` k ) <_ sum_ k e. ( M ... j ) ( F ` k ) ) |
| 113 |
84 93 97 98 112
|
ltletrd |
|- ( ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) /\ w C_ ( M ... j ) ) -> z < sum_ k e. ( M ... j ) ( F ` k ) ) |
| 114 |
113
|
ex |
|- ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) -> ( w C_ ( M ... j ) -> z < sum_ k e. ( M ... j ) ( F ` k ) ) ) |
| 115 |
114
|
reximdv |
|- ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) -> ( E. j e. Z w C_ ( M ... j ) -> E. j e. Z z < sum_ k e. ( M ... j ) ( F ` k ) ) ) |
| 116 |
83 115
|
mpd |
|- ( ( ( ph /\ z e. RR ) /\ w e. ( ~P Z i^i Fin ) /\ z < sum_ k e. w ( F ` k ) ) -> E. j e. Z z < sum_ k e. ( M ... j ) ( F ` k ) ) |
| 117 |
116
|
3exp |
|- ( ( ph /\ z e. RR ) -> ( w e. ( ~P Z i^i Fin ) -> ( z < sum_ k e. w ( F ` k ) -> E. j e. Z z < sum_ k e. ( M ... j ) ( F ` k ) ) ) ) |
| 118 |
117
|
adantr |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> ( w e. ( ~P Z i^i Fin ) -> ( z < sum_ k e. w ( F ` k ) -> E. j e. Z z < sum_ k e. ( M ... j ) ( F ` k ) ) ) ) |
| 119 |
118
|
rexlimdv |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> ( E. w e. ( ~P Z i^i Fin ) z < sum_ k e. w ( F ` k ) -> E. j e. Z z < sum_ k e. ( M ... j ) ( F ` k ) ) ) |
| 120 |
76 119
|
mpd |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> E. j e. Z z < sum_ k e. ( M ... j ) ( F ` k ) ) |
| 121 |
10
|
ffnd |
|- ( ph -> seq M ( + , F ) Fn Z ) |
| 122 |
121
|
adantr |
|- ( ( ph /\ j e. Z ) -> seq M ( + , F ) Fn Z ) |
| 123 |
47 45
|
sylibr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
| 124 |
|
fnfvelrn |
|- ( ( seq M ( + , F ) Fn Z /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. ran seq M ( + , F ) ) |
| 125 |
122 123 124
|
syl2anc |
|- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. ran seq M ( + , F ) ) |
| 126 |
4
|
a1i |
|- ( ( ph /\ j e. Z ) -> G = seq M ( + , F ) ) |
| 127 |
126
|
rneqd |
|- ( ( ph /\ j e. Z ) -> ran G = ran seq M ( + , F ) ) |
| 128 |
50 127
|
eleq12d |
|- ( ( ph /\ j e. Z ) -> ( sum_ k e. ( M ... j ) ( F ` k ) e. ran G <-> ( seq M ( + , F ) ` j ) e. ran seq M ( + , F ) ) ) |
| 129 |
125 128
|
mpbird |
|- ( ( ph /\ j e. Z ) -> sum_ k e. ( M ... j ) ( F ` k ) e. ran G ) |
| 130 |
129
|
adantlr |
|- ( ( ( ph /\ z e. RR ) /\ j e. Z ) -> sum_ k e. ( M ... j ) ( F ` k ) e. ran G ) |
| 131 |
130
|
3adant3 |
|- ( ( ( ph /\ z e. RR ) /\ j e. Z /\ z < sum_ k e. ( M ... j ) ( F ` k ) ) -> sum_ k e. ( M ... j ) ( F ` k ) e. ran G ) |
| 132 |
|
simp3 |
|- ( ( ( ph /\ z e. RR ) /\ j e. Z /\ z < sum_ k e. ( M ... j ) ( F ` k ) ) -> z < sum_ k e. ( M ... j ) ( F ` k ) ) |
| 133 |
|
breq2 |
|- ( y = sum_ k e. ( M ... j ) ( F ` k ) -> ( z < y <-> z < sum_ k e. ( M ... j ) ( F ` k ) ) ) |
| 134 |
133
|
rspcev |
|- ( ( sum_ k e. ( M ... j ) ( F ` k ) e. ran G /\ z < sum_ k e. ( M ... j ) ( F ` k ) ) -> E. y e. ran G z < y ) |
| 135 |
131 132 134
|
syl2anc |
|- ( ( ( ph /\ z e. RR ) /\ j e. Z /\ z < sum_ k e. ( M ... j ) ( F ` k ) ) -> E. y e. ran G z < y ) |
| 136 |
135
|
3exp |
|- ( ( ph /\ z e. RR ) -> ( j e. Z -> ( z < sum_ k e. ( M ... j ) ( F ` k ) -> E. y e. ran G z < y ) ) ) |
| 137 |
136
|
rexlimdv |
|- ( ( ph /\ z e. RR ) -> ( E. j e. Z z < sum_ k e. ( M ... j ) ( F ` k ) -> E. y e. ran G z < y ) ) |
| 138 |
137
|
adantr |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> ( E. j e. Z z < sum_ k e. ( M ... j ) ( F ` k ) -> E. y e. ran G z < y ) ) |
| 139 |
120 138
|
mpd |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sum^ ` F ) ) -> E. y e. ran G z < y ) |
| 140 |
139
|
ex |
|- ( ( ph /\ z e. RR ) -> ( z < ( sum^ ` F ) -> E. y e. ran G z < y ) ) |
| 141 |
140
|
ralrimiva |
|- ( ph -> A. z e. RR ( z < ( sum^ ` F ) -> E. y e. ran G z < y ) ) |
| 142 |
|
supxr2 |
|- ( ( ( ran G C_ RR* /\ ( sum^ ` F ) e. RR* ) /\ ( A. z e. ran G z <_ ( sum^ ` F ) /\ A. z e. RR ( z < ( sum^ ` F ) -> E. y e. ran G z < y ) ) ) -> sup ( ran G , RR* , < ) = ( sum^ ` F ) ) |
| 143 |
17 23 67 141 142
|
syl22anc |
|- ( ph -> sup ( ran G , RR* , < ) = ( sum^ ` F ) ) |
| 144 |
143
|
eqcomd |
|- ( ph -> ( sum^ ` F ) = sup ( ran G , RR* , < ) ) |