Metamath Proof Explorer


Theorem sge0seq

Description: A series of nonnegative reals agrees with the generalized sum of nonnegative reals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses sge0seq.m φM
sge0seq.z Z=M
sge0seq.f φF:Z0+∞
sge0seq.g G=seqM+F
Assertion sge0seq φsum^F=supranG*<

Proof

Step Hyp Ref Expression
1 sge0seq.m φM
2 sge0seq.z Z=M
3 sge0seq.f φF:Z0+∞
4 sge0seq.g G=seqM+F
5 rge0ssre 0+∞
6 3 ffvelcdmda φkZFk0+∞
7 5 6 sselid φkZFk
8 readdcl kik+i
9 8 adantl φkik+i
10 2 1 7 9 seqf φseqM+F:Z
11 4 a1i φG=seqM+F
12 11 feq1d φG:ZseqM+F:Z
13 10 12 mpbird φG:Z
14 13 frnd φranG
15 ressxr *
16 15 a1i φ*
17 14 16 sstrd φranG*
18 2 fvexi ZV
19 18 a1i φZV
20 icossicc 0+∞0+∞
21 20 a1i φ0+∞0+∞
22 3 21 fssd φF:Z0+∞
23 19 22 sge0xrcl φsum^F*
24 simpr φzranGzranG
25 13 ffnd φGFnZ
26 fvelrnb GFnZzranGjZGj=z
27 25 26 syl φzranGjZGj=z
28 27 adantr φzranGzranGjZGj=z
29 24 28 mpbid φzranGjZGj=z
30 20 6 sselid φkZFk0+∞
31 elfzuz kMjkM
32 31 2 eleqtrrdi kMjkZ
33 32 ssriv MjZ
34 33 a1i φMjZ
35 19 30 34 sge0lessmpt φsum^kMjFksum^kZFk
36 35 3ad2ant1 φjZGj=zsum^kMjFksum^kZFk
37 fzfid φMjFin
38 32 6 sylan2 φkMjFk0+∞
39 37 38 sge0fsummpt φsum^kMjFk=k=MjFk
40 39 3ad2ant1 φjZGj=zsum^kMjFk=k=MjFk
41 simpll φjZkMjφ
42 32 adantl φjZkMjkZ
43 eqidd φkZFk=Fk
44 41 42 43 syl2anc φjZkMjFk=Fk
45 2 eleq2i jZjM
46 45 biimpi jZjM
47 46 adantl φjZjM
48 7 recnd φkZFk
49 41 42 48 syl2anc φjZkMjFk
50 44 47 49 fsumser φjZk=MjFk=seqM+Fj
51 50 3adant3 φjZGj=zk=MjFk=seqM+Fj
52 40 51 eqtrd φjZGj=zsum^kMjFk=seqM+Fj
53 4 eqcomi seqM+F=G
54 53 fveq1i seqM+Fj=Gj
55 54 a1i φjZGj=zseqM+Fj=Gj
56 simp3 φjZGj=zGj=z
57 52 55 56 3eqtrrd φjZGj=zz=sum^kMjFk
58 3 feqmptd φF=kZFk
59 58 fveq2d φsum^F=sum^kZFk
60 59 3ad2ant1 φjZGj=zsum^F=sum^kZFk
61 57 60 breq12d φjZGj=zzsum^Fsum^kMjFksum^kZFk
62 36 61 mpbird φjZGj=zzsum^F
63 62 3exp φjZGj=zzsum^F
64 63 adantr φzranGjZGj=zzsum^F
65 64 rexlimdv φzranGjZGj=zzsum^F
66 29 65 mpd φzranGzsum^F
67 66 ralrimiva φzranGzsum^F
68 nfv kφzz<sum^F
69 18 a1i φzz<sum^FZV
70 6 ad4ant14 φzz<sum^FkZFk0+∞
71 simplr φzz<sum^Fz
72 simpr φz<sum^Fz<sum^F
73 59 adantr φz<sum^Fsum^F=sum^kZFk
74 72 73 breqtrd φz<sum^Fz<sum^kZFk
75 74 adantlr φzz<sum^Fz<sum^kZFk
76 68 69 70 71 75 sge0gtfsumgt φzz<sum^Fw𝒫ZFinz<kwFk
77 1 3ad2ant1 φw𝒫ZFinz<kwFkM
78 elpwinss w𝒫ZFinwZ
79 78 3ad2ant2 φw𝒫ZFinz<kwFkwZ
80 elinel2 w𝒫ZFinwFin
81 80 3ad2ant2 φw𝒫ZFinz<kwFkwFin
82 77 2 79 81 uzfissfz φw𝒫ZFinz<kwFkjZwMj
83 82 3adant1r φzw𝒫ZFinz<kwFkjZwMj
84 simpl1r φzw𝒫ZFinz<kwFkwMjz
85 80 adantl φw𝒫ZFinwFin
86 58 7 fmpt3d φF:Z
87 86 ad2antrr φw𝒫ZFinkwF:Z
88 78 sselda w𝒫ZFinkwkZ
89 88 adantll φw𝒫ZFinkwkZ
90 87 89 ffvelcdmd φw𝒫ZFinkwFk
91 85 90 fsumrecl φw𝒫ZFinkwFk
92 91 ad4ant13 φzw𝒫ZFinwMjkwFk
93 92 3adantl3 φzw𝒫ZFinz<kwFkwMjkwFk
94 32 7 sylan2 φkMjFk
95 37 94 fsumrecl φk=MjFk
96 95 ad3antrrr φzw𝒫ZFinwMjk=MjFk
97 96 3adantl3 φzw𝒫ZFinz<kwFkwMjk=MjFk
98 simpl3 φzw𝒫ZFinz<kwFkwMjz<kwFk
99 37 adantr φwMjMjFin
100 94 adantlr φwMjkMjFk
101 0xr 0*
102 101 a1i φkZ0*
103 pnfxr +∞*
104 103 a1i φkZ+∞*
105 icogelb 0*+∞*Fk0+∞0Fk
106 102 104 6 105 syl3anc φkZ0Fk
107 32 106 sylan2 φkMj0Fk
108 107 adantlr φwMjkMj0Fk
109 simpr φwMjwMj
110 99 100 108 109 fsumless φwMjkwFkk=MjFk
111 110 adantlr φzwMjkwFkk=MjFk
112 111 3ad2antl1 φzw𝒫ZFinz<kwFkwMjkwFkk=MjFk
113 84 93 97 98 112 ltletrd φzw𝒫ZFinz<kwFkwMjz<k=MjFk
114 113 ex φzw𝒫ZFinz<kwFkwMjz<k=MjFk
115 114 reximdv φzw𝒫ZFinz<kwFkjZwMjjZz<k=MjFk
116 83 115 mpd φzw𝒫ZFinz<kwFkjZz<k=MjFk
117 116 3exp φzw𝒫ZFinz<kwFkjZz<k=MjFk
118 117 adantr φzz<sum^Fw𝒫ZFinz<kwFkjZz<k=MjFk
119 118 rexlimdv φzz<sum^Fw𝒫ZFinz<kwFkjZz<k=MjFk
120 76 119 mpd φzz<sum^FjZz<k=MjFk
121 10 ffnd φseqM+FFnZ
122 121 adantr φjZseqM+FFnZ
123 47 45 sylibr φjZjZ
124 fnfvelrn seqM+FFnZjZseqM+FjranseqM+F
125 122 123 124 syl2anc φjZseqM+FjranseqM+F
126 4 a1i φjZG=seqM+F
127 126 rneqd φjZranG=ranseqM+F
128 50 127 eleq12d φjZk=MjFkranGseqM+FjranseqM+F
129 125 128 mpbird φjZk=MjFkranG
130 129 adantlr φzjZk=MjFkranG
131 130 3adant3 φzjZz<k=MjFkk=MjFkranG
132 simp3 φzjZz<k=MjFkz<k=MjFk
133 breq2 y=k=MjFkz<yz<k=MjFk
134 133 rspcev k=MjFkranGz<k=MjFkyranGz<y
135 131 132 134 syl2anc φzjZz<k=MjFkyranGz<y
136 135 3exp φzjZz<k=MjFkyranGz<y
137 136 rexlimdv φzjZz<k=MjFkyranGz<y
138 137 adantr φzz<sum^FjZz<k=MjFkyranGz<y
139 120 138 mpd φzz<sum^FyranGz<y
140 139 ex φzz<sum^FyranGz<y
141 140 ralrimiva φzz<sum^FyranGz<y
142 supxr2 ranG*sum^F*zranGzsum^Fzz<sum^FyranGz<ysupranG*<=sum^F
143 17 23 67 141 142 syl22anc φsupranG*<=sum^F
144 143 eqcomd φsum^F=supranG*<