| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0gtfsumgt.k |
|
| 2 |
|
sge0gtfsumgt.a |
|
| 3 |
|
sge0gtfsumgt.b |
|
| 4 |
|
sge0gtfsumgt.c |
|
| 5 |
|
sge0gtfsumgt.l |
|
| 6 |
|
nfcv |
|
| 7 |
|
nfmpt1 |
|
| 8 |
6 7
|
nffv |
|
| 9 |
|
nfcv |
|
| 10 |
8 9
|
nfel |
|
| 11 |
1 10
|
nfan |
|
| 12 |
2
|
adantr |
|
| 13 |
|
icossicc |
|
| 14 |
13 3
|
sselid |
|
| 15 |
14
|
adantlr |
|
| 16 |
5
|
adantr |
|
| 17 |
4
|
adantr |
|
| 18 |
|
simpr |
|
| 19 |
|
difrp |
|
| 20 |
17 18 19
|
syl2anc |
|
| 21 |
16 20
|
mpbid |
|
| 22 |
11 12 15 21 18
|
sge0ltfirpmpt2 |
|
| 23 |
|
simpr |
|
| 24 |
|
nfv |
|
| 25 |
1 24
|
nfan |
|
| 26 |
|
elinel2 |
|
| 27 |
26
|
adantl |
|
| 28 |
|
simpll |
|
| 29 |
|
elpwinss |
|
| 30 |
29
|
adantr |
|
| 31 |
|
simpr |
|
| 32 |
30 31
|
sseldd |
|
| 33 |
32
|
adantll |
|
| 34 |
|
rge0ssre |
|
| 35 |
34 3
|
sselid |
|
| 36 |
28 33 35
|
syl2anc |
|
| 37 |
25 27 36
|
fsumreclf |
|
| 38 |
37
|
recnd |
|
| 39 |
38
|
ad4ant13 |
|
| 40 |
18
|
ad2antrr |
|
| 41 |
40
|
recnd |
|
| 42 |
17
|
ad2antrr |
|
| 43 |
42
|
recnd |
|
| 44 |
41 43
|
subcld |
|
| 45 |
39 44
|
addcomd |
|
| 46 |
23 45
|
breqtrd |
|
| 47 |
40 42
|
resubcld |
|
| 48 |
37
|
ad4ant13 |
|
| 49 |
40 47 48
|
ltsubadd2d |
|
| 50 |
46 49
|
mpbird |
|
| 51 |
41 43
|
nncand |
|
| 52 |
51
|
breq1d |
|
| 53 |
50 52
|
mpbid |
|
| 54 |
53
|
ex |
|
| 55 |
54
|
reximdva |
|
| 56 |
22 55
|
mpd |
|
| 57 |
|
simpl |
|
| 58 |
|
simpr |
|
| 59 |
|
eqid |
|
| 60 |
1 3 59
|
fmptdf |
|
| 61 |
13
|
a1i |
|
| 62 |
60 61
|
fssd |
|
| 63 |
2 62
|
sge0repnf |
|
| 64 |
63
|
adantr |
|
| 65 |
58 64
|
mtbid |
|
| 66 |
|
notnotb |
|
| 67 |
65 66
|
sylibr |
|
| 68 |
8
|
nfeq1 |
|
| 69 |
1 68
|
nfan |
|
| 70 |
2
|
adantr |
|
| 71 |
3
|
adantlr |
|
| 72 |
|
simpr |
|
| 73 |
4
|
adantr |
|
| 74 |
69 70 71 72 73
|
sge0pnffsumgt |
|
| 75 |
57 67 74
|
syl2anc |
|
| 76 |
56 75
|
pm2.61dan |
|