Description: If the extended sum of nonnegative reals is not +oo , then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sge0ltfirpmpt2.xph | |
|
sge0ltfirpmpt2.a | |
||
sge0ltfirpmpt2.b | |
||
sge0ltfirpmpt2.rp | |
||
sge0ltfirpmpt2.re | |
||
Assertion | sge0ltfirpmpt2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0ltfirpmpt2.xph | |
|
2 | sge0ltfirpmpt2.a | |
|
3 | sge0ltfirpmpt2.b | |
|
4 | sge0ltfirpmpt2.rp | |
|
5 | sge0ltfirpmpt2.re | |
|
6 | eqid | |
|
7 | 1 3 6 | fmptdf | |
8 | 2 7 4 5 | sge0ltfirp | |
9 | simpr | |
|
10 | elpwinss | |
|
11 | 10 | resmptd | |
12 | 11 | fveq2d | |
13 | 12 | adantl | |
14 | elinel2 | |
|
15 | 14 | adantl | |
16 | nfv | |
|
17 | 1 16 | nfan | |
18 | simpll | |
|
19 | 10 | sselda | |
20 | 19 | adantll | |
21 | 1 2 3 5 | sge0rernmpt | |
22 | 18 20 21 | syl2anc | |
23 | eqid | |
|
24 | 17 22 23 | fmptdf | |
25 | 15 24 | sge0fsum | |
26 | simpr | |
|
27 | simpll | |
|
28 | 10 | sselda | |
29 | 28 | adantll | |
30 | nfv | |
|
31 | 1 30 | nfan | |
32 | nfcsb1v | |
|
33 | 32 | nfel1 | |
34 | 31 33 | nfim | |
35 | eleq1w | |
|
36 | 35 | anbi2d | |
37 | csbeq1a | |
|
38 | 37 | eleq1d | |
39 | 36 38 | imbi12d | |
40 | 34 39 21 | chvarfv | |
41 | 27 29 40 | syl2anc | |
42 | nfcv | |
|
43 | 42 32 37 | cbvmpt | |
44 | 43 | fvmpt2 | |
45 | 26 41 44 | syl2anc | |
46 | 45 | sumeq2dv | |
47 | eqcom | |
|
48 | 47 | imbi1i | |
49 | eqcom | |
|
50 | 49 | imbi2i | |
51 | 48 50 | bitri | |
52 | 37 51 | mpbi | |
53 | nfcv | |
|
54 | nfcv | |
|
55 | 52 53 54 32 42 | cbvsum | |
56 | 55 | a1i | |
57 | 46 56 | eqtrd | |
58 | 13 25 57 | 3eqtrd | |
59 | 58 | oveq1d | |
60 | 59 | adantr | |
61 | 9 60 | breqtrd | |
62 | 61 | ex | |
63 | 62 | reximdva | |
64 | 8 63 | mpd | |