Metamath Proof Explorer


Theorem sge0ltfirpmpt2

Description: If the extended sum of nonnegative reals is not +oo , then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0ltfirpmpt2.xph xφ
sge0ltfirpmpt2.a φAV
sge0ltfirpmpt2.b φxAB0+∞
sge0ltfirpmpt2.rp φY+
sge0ltfirpmpt2.re φsum^xAB
Assertion sge0ltfirpmpt2 φy𝒫AFinsum^xAB<xyB+Y

Proof

Step Hyp Ref Expression
1 sge0ltfirpmpt2.xph xφ
2 sge0ltfirpmpt2.a φAV
3 sge0ltfirpmpt2.b φxAB0+∞
4 sge0ltfirpmpt2.rp φY+
5 sge0ltfirpmpt2.re φsum^xAB
6 eqid xAB=xAB
7 1 3 6 fmptdf φxAB:A0+∞
8 2 7 4 5 sge0ltfirp φy𝒫AFinsum^xAB<sum^xABy+Y
9 simpr φy𝒫AFinsum^xAB<sum^xABy+Ysum^xAB<sum^xABy+Y
10 elpwinss y𝒫AFinyA
11 10 resmptd y𝒫AFinxABy=xyB
12 11 fveq2d y𝒫AFinsum^xABy=sum^xyB
13 12 adantl φy𝒫AFinsum^xABy=sum^xyB
14 elinel2 y𝒫AFinyFin
15 14 adantl φy𝒫AFinyFin
16 nfv xy𝒫AFin
17 1 16 nfan xφy𝒫AFin
18 simpll φy𝒫AFinxyφ
19 10 sselda y𝒫AFinxyxA
20 19 adantll φy𝒫AFinxyxA
21 1 2 3 5 sge0rernmpt φxAB0+∞
22 18 20 21 syl2anc φy𝒫AFinxyB0+∞
23 eqid xyB=xyB
24 17 22 23 fmptdf φy𝒫AFinxyB:y0+∞
25 15 24 sge0fsum φy𝒫AFinsum^xyB=kyxyBk
26 simpr φy𝒫AFinkyky
27 simpll φy𝒫AFinkyφ
28 10 sselda y𝒫AFinkykA
29 28 adantll φy𝒫AFinkykA
30 nfv xkA
31 1 30 nfan xφkA
32 nfcsb1v _xk/xB
33 32 nfel1 xk/xB0+∞
34 31 33 nfim xφkAk/xB0+∞
35 eleq1w x=kxAkA
36 35 anbi2d x=kφxAφkA
37 csbeq1a x=kB=k/xB
38 37 eleq1d x=kB0+∞k/xB0+∞
39 36 38 imbi12d x=kφxAB0+∞φkAk/xB0+∞
40 34 39 21 chvarfv φkAk/xB0+∞
41 27 29 40 syl2anc φy𝒫AFinkyk/xB0+∞
42 nfcv _kB
43 42 32 37 cbvmpt xyB=kyk/xB
44 43 fvmpt2 kyk/xB0+∞xyBk=k/xB
45 26 41 44 syl2anc φy𝒫AFinkyxyBk=k/xB
46 45 sumeq2dv φy𝒫AFinkyxyBk=kyk/xB
47 eqcom x=kk=x
48 47 imbi1i x=kB=k/xBk=xB=k/xB
49 eqcom B=k/xBk/xB=B
50 49 imbi2i k=xB=k/xBk=xk/xB=B
51 48 50 bitri x=kB=k/xBk=xk/xB=B
52 37 51 mpbi k=xk/xB=B
53 nfcv _xy
54 nfcv _ky
55 52 53 54 32 42 cbvsum kyk/xB=xyB
56 55 a1i φy𝒫AFinkyk/xB=xyB
57 46 56 eqtrd φy𝒫AFinkyxyBk=xyB
58 13 25 57 3eqtrd φy𝒫AFinsum^xABy=xyB
59 58 oveq1d φy𝒫AFinsum^xABy+Y=xyB+Y
60 59 adantr φy𝒫AFinsum^xAB<sum^xABy+Ysum^xABy+Y=xyB+Y
61 9 60 breqtrd φy𝒫AFinsum^xAB<sum^xABy+Ysum^xAB<xyB+Y
62 61 ex φy𝒫AFinsum^xAB<sum^xABy+Ysum^xAB<xyB+Y
63 62 reximdva φy𝒫AFinsum^xAB<sum^xABy+Yy𝒫AFinsum^xAB<xyB+Y
64 8 63 mpd φy𝒫AFinsum^xAB<xyB+Y