| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0ltfirpmpt2.xph |
|
| 2 |
|
sge0ltfirpmpt2.a |
|
| 3 |
|
sge0ltfirpmpt2.b |
|
| 4 |
|
sge0ltfirpmpt2.rp |
|
| 5 |
|
sge0ltfirpmpt2.re |
|
| 6 |
|
eqid |
|
| 7 |
1 3 6
|
fmptdf |
|
| 8 |
2 7 4 5
|
sge0ltfirp |
|
| 9 |
|
simpr |
|
| 10 |
|
elpwinss |
|
| 11 |
10
|
resmptd |
|
| 12 |
11
|
fveq2d |
|
| 13 |
12
|
adantl |
|
| 14 |
|
elinel2 |
|
| 15 |
14
|
adantl |
|
| 16 |
|
nfv |
|
| 17 |
1 16
|
nfan |
|
| 18 |
|
simpll |
|
| 19 |
10
|
sselda |
|
| 20 |
19
|
adantll |
|
| 21 |
1 2 3 5
|
sge0rernmpt |
|
| 22 |
18 20 21
|
syl2anc |
|
| 23 |
|
eqid |
|
| 24 |
17 22 23
|
fmptdf |
|
| 25 |
15 24
|
sge0fsum |
|
| 26 |
|
simpr |
|
| 27 |
|
simpll |
|
| 28 |
10
|
sselda |
|
| 29 |
28
|
adantll |
|
| 30 |
|
nfv |
|
| 31 |
1 30
|
nfan |
|
| 32 |
|
nfcsb1v |
|
| 33 |
32
|
nfel1 |
|
| 34 |
31 33
|
nfim |
|
| 35 |
|
eleq1w |
|
| 36 |
35
|
anbi2d |
|
| 37 |
|
csbeq1a |
|
| 38 |
37
|
eleq1d |
|
| 39 |
36 38
|
imbi12d |
|
| 40 |
34 39 21
|
chvarfv |
|
| 41 |
27 29 40
|
syl2anc |
|
| 42 |
|
nfcv |
|
| 43 |
42 32 37
|
cbvmpt |
|
| 44 |
43
|
fvmpt2 |
|
| 45 |
26 41 44
|
syl2anc |
|
| 46 |
45
|
sumeq2dv |
|
| 47 |
|
eqcom |
|
| 48 |
47
|
imbi1i |
|
| 49 |
|
eqcom |
|
| 50 |
49
|
imbi2i |
|
| 51 |
48 50
|
bitri |
|
| 52 |
37 51
|
mpbi |
|
| 53 |
52 32 42
|
cbvsum |
|
| 54 |
53
|
a1i |
|
| 55 |
46 54
|
eqtrd |
|
| 56 |
13 25 55
|
3eqtrd |
|
| 57 |
56
|
oveq1d |
|
| 58 |
57
|
adantr |
|
| 59 |
9 58
|
breqtrd |
|
| 60 |
59
|
ex |
|
| 61 |
60
|
reximdva |
|
| 62 |
8 61
|
mpd |
|