Metamath Proof Explorer


Theorem sge0isum

Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0isum.m φ M
sge0isum.z Z = M
sge0isum.f φ F : Z 0 +∞
sge0isum.g G = seq M + F
sge0isum.gcnv φ G B
Assertion sge0isum φ sum^ F = B

Proof

Step Hyp Ref Expression
1 sge0isum.m φ M
2 sge0isum.z Z = M
3 sge0isum.f φ F : Z 0 +∞
4 sge0isum.g G = seq M + F
5 sge0isum.gcnv φ G B
6 2 fvexi Z V
7 6 a1i φ Z V
8 icossicc 0 +∞ 0 +∞
9 8 a1i φ 0 +∞ 0 +∞
10 3 9 fssd φ F : Z 0 +∞
11 7 10 sge0xrcl φ sum^ F *
12 eqidd φ k Z F k = F k
13 rge0ssre 0 +∞
14 3 ffvelrnda φ k Z F k 0 +∞
15 13 14 sseldi φ k Z F k
16 0xr 0 *
17 16 a1i φ k Z 0 *
18 pnfxr +∞ *
19 18 a1i φ k Z +∞ *
20 icogelb 0 * +∞ * F k 0 +∞ 0 F k
21 17 19 14 20 syl3anc φ k Z 0 F k
22 seqex seq M + F V
23 4 22 eqeltri G V
24 23 a1i φ G V
25 climcl G B B
26 5 25 syl φ B
27 breldmg G V B G B G dom
28 24 26 5 27 syl3anc φ G dom
29 4 a1i φ j Z G = seq M + F
30 29 fveq1d φ j Z G j = seq M + F j
31 2 eleq2i j Z j M
32 31 biimpi j Z j M
33 32 adantl φ j Z j M
34 simpll φ j Z k M j φ
35 elfzuz k M j k M
36 35 2 eleqtrrdi k M j k Z
37 36 adantl φ j Z k M j k Z
38 34 37 15 syl2anc φ j Z k M j F k
39 readdcl k i k + i
40 39 adantl φ j Z k i k + i
41 33 38 40 seqcl φ j Z seq M + F j
42 30 41 eqeltrd φ j Z G j
43 42 recnd φ j Z G j
44 43 ralrimiva φ j Z G j
45 2 climbdd M G dom j Z G j x j Z G j x
46 1 28 44 45 syl3anc φ x j Z G j x
47 42 ad4ant13 φ x j Z G j x G j
48 43 ad4ant13 φ x j Z G j x G j
49 48 abscld φ x j Z G j x G j
50 simpllr φ x j Z G j x x
51 47 leabsd φ x j Z G j x G j G j
52 simpr φ x j Z G j x G j x
53 47 49 50 51 52 letrd φ x j Z G j x G j x
54 53 ex φ x j Z G j x G j x
55 54 ralimdva φ x j Z G j x j Z G j x
56 55 reximdva φ x j Z G j x x j Z G j x
57 46 56 mpd φ x j Z G j x
58 2 4 1 12 15 21 57 isumsup2 φ G sup ran G <
59 2 1 58 42 climrecl φ sup ran G <
60 59 rexrd φ sup ran G < *
61 3 feqmptd φ F = k Z F k
62 61 fveq2d φ sum^ F = sum^ k Z F k
63 mpteq1 y = k y F k = k F k
64 63 fveq2d y = sum^ k y F k = sum^ k F k
65 mpt0 k F k =
66 65 fveq2i sum^ k F k = sum^
67 sge00 sum^ = 0
68 66 67 eqtri sum^ k F k = 0
69 68 a1i y = sum^ k F k = 0
70 64 69 eqtrd y = sum^ k y F k = 0
71 70 adantl φ y 𝒫 Z Fin y = sum^ k y F k = 0
72 0red φ 0
73 39 adantl φ k i k + i
74 2 1 15 73 seqf φ seq M + F : Z
75 4 a1i φ G = seq M + F
76 75 feq1d φ G : Z seq M + F : Z
77 74 76 mpbird φ G : Z
78 77 frnd φ ran G
79 77 ffund φ Fun G
80 uzid M M M
81 1 80 syl φ M M
82 2 eqcomi M = Z
83 81 82 eleqtrdi φ M Z
84 77 fdmd φ dom G = Z
85 84 eqcomd φ Z = dom G
86 83 85 eleqtrd φ M dom G
87 fvelrn Fun G M dom G G M ran G
88 79 86 87 syl2anc φ G M ran G
89 78 88 sseldd φ G M
90 16 a1i φ 0 *
91 18 a1i φ +∞ *
92 3 83 ffvelrnd φ F M 0 +∞
93 icogelb 0 * +∞ * F M 0 +∞ 0 F M
94 90 91 92 93 syl3anc φ 0 F M
95 4 fveq1i G M = seq M + F M
96 95 a1i φ G M = seq M + F M
97 seq1 M seq M + F M = F M
98 1 97 syl φ seq M + F M = F M
99 96 98 eqtr2d φ F M = G M
100 94 99 breqtrd φ 0 G M
101 88 ne0d φ ran G
102 simpr φ z ran G z ran G
103 77 ffnd φ G Fn Z
104 fvelrnb G Fn Z z ran G j Z G j = z
105 103 104 syl φ z ran G j Z G j = z
106 105 adantr φ z ran G z ran G j Z G j = z
107 102 106 mpbid φ z ran G j Z G j = z
108 107 adantlr φ j Z G j x z ran G j Z G j = z
109 nfv j φ
110 nfra1 j j Z G j x
111 109 110 nfan j φ j Z G j x
112 nfv j z ran G
113 111 112 nfan j φ j Z G j x z ran G
114 nfv j z x
115 rspa j Z G j x j Z G j x
116 115 3adant3 j Z G j x j Z G j = z G j x
117 simp3 j Z G j x j Z G j = z G j = z
118 id G j = z G j = z
119 118 eqcomd G j = z z = G j
120 119 adantl G j x G j = z z = G j
121 simpl G j x G j = z G j x
122 120 121 eqbrtrd G j x G j = z z x
123 116 117 122 syl2anc j Z G j x j Z G j = z z x
124 123 3exp j Z G j x j Z G j = z z x
125 124 ad2antlr φ j Z G j x z ran G j Z G j = z z x
126 113 114 125 rexlimd φ j Z G j x z ran G j Z G j = z z x
127 108 126 mpd φ j Z G j x z ran G z x
128 127 ralrimiva φ j Z G j x z ran G z x
129 128 ex φ j Z G j x z ran G z x
130 129 reximdv φ x j Z G j x x z ran G z x
131 57 130 mpd φ x z ran G z x
132 suprub ran G ran G x z ran G z x G M ran G G M sup ran G <
133 78 101 131 88 132 syl31anc φ G M sup ran G <
134 72 89 59 100 133 letrd φ 0 sup ran G <
135 134 ad2antrr φ y 𝒫 Z Fin y = 0 sup ran G <
136 71 135 eqbrtrd φ y 𝒫 Z Fin y = sum^ k y F k sup ran G <
137 simpr φ y 𝒫 Z Fin y 𝒫 Z Fin
138 simpll φ y 𝒫 Z Fin k y φ
139 elpwinss y 𝒫 Z Fin y Z
140 139 sselda y 𝒫 Z Fin k y k Z
141 140 adantll φ y 𝒫 Z Fin k y k Z
142 8 14 sseldi φ k Z F k 0 +∞
143 138 141 142 syl2anc φ y 𝒫 Z Fin k y F k 0 +∞
144 eqid k y F k = k y F k
145 143 144 fmptd φ y 𝒫 Z Fin k y F k : y 0 +∞
146 137 145 sge0xrcl φ y 𝒫 Z Fin sum^ k y F k *
147 146 adantr φ y 𝒫 Z Fin ¬ y = sum^ k y F k *
148 fzfid φ y 𝒫 Z Fin M sup y < Fin
149 elfzuz k M sup y < k M
150 149 82 eleqtrdi k M sup y < k Z
151 150 142 sylan2 φ k M sup y < F k 0 +∞
152 eqid k M sup y < F k = k M sup y < F k
153 151 152 fmptd φ k M sup y < F k : M sup y < 0 +∞
154 153 adantr φ y 𝒫 Z Fin k M sup y < F k : M sup y < 0 +∞
155 148 154 sge0xrcl φ y 𝒫 Z Fin sum^ k M sup y < F k *
156 155 adantr φ y 𝒫 Z Fin ¬ y = sum^ k M sup y < F k *
157 60 adantr φ y 𝒫 Z Fin sup ran G < *
158 157 adantr φ y 𝒫 Z Fin ¬ y = sup ran G < *
159 simpll φ y 𝒫 Z Fin k M sup y < φ
160 150 adantl φ y 𝒫 Z Fin k M sup y < k Z
161 159 160 142 syl2anc φ y 𝒫 Z Fin k M sup y < F k 0 +∞
162 elinel2 y 𝒫 Z Fin y Fin
163 2 139 162 ssuzfz y 𝒫 Z Fin y M sup y <
164 163 adantl φ y 𝒫 Z Fin y M sup y <
165 148 161 164 sge0lessmpt φ y 𝒫 Z Fin sum^ k y F k sum^ k M sup y < F k
166 165 adantr φ y 𝒫 Z Fin ¬ y = sum^ k y F k sum^ k M sup y < F k
167 78 adantr φ y 𝒫 Z Fin ran G
168 167 adantr φ y 𝒫 Z Fin ¬ y = ran G
169 101 adantr φ y 𝒫 Z Fin ran G
170 169 adantr φ y 𝒫 Z Fin ¬ y = ran G
171 131 adantr φ y 𝒫 Z Fin x z ran G z x
172 171 adantr φ y 𝒫 Z Fin ¬ y = x z ran G z x
173 159 160 14 syl2anc φ y 𝒫 Z Fin k M sup y < F k 0 +∞
174 148 173 sge0fsummpt φ y 𝒫 Z Fin sum^ k M sup y < F k = k = M sup y < F k
175 174 adantr φ y 𝒫 Z Fin ¬ y = sum^ k M sup y < F k = k = M sup y < F k
176 eqidd φ y 𝒫 Z Fin ¬ y = k M sup y < F k = F k
177 139 2 sseqtrdi y 𝒫 Z Fin y M
178 177 adantr y 𝒫 Z Fin ¬ y = y M
179 uzssz M
180 2 179 eqsstri Z
181 139 180 sstrdi y 𝒫 Z Fin y
182 181 adantr y 𝒫 Z Fin ¬ y = y
183 neqne ¬ y = y
184 183 adantl y 𝒫 Z Fin ¬ y = y
185 162 adantr y 𝒫 Z Fin ¬ y = y Fin
186 suprfinzcl y y y Fin sup y < y
187 182 184 185 186 syl3anc y 𝒫 Z Fin ¬ y = sup y < y
188 178 187 sseldd y 𝒫 Z Fin ¬ y = sup y < M
189 188 adantll φ y 𝒫 Z Fin ¬ y = sup y < M
190 15 recnd φ k Z F k
191 159 160 190 syl2anc φ y 𝒫 Z Fin k M sup y < F k
192 191 adantlr φ y 𝒫 Z Fin ¬ y = k M sup y < F k
193 176 189 192 fsumser φ y 𝒫 Z Fin ¬ y = k = M sup y < F k = seq M + F sup y <
194 4 eqcomi seq M + F = G
195 194 fveq1i seq M + F sup y < = G sup y <
196 195 a1i φ y 𝒫 Z Fin ¬ y = seq M + F sup y < = G sup y <
197 175 193 196 3eqtrd φ y 𝒫 Z Fin ¬ y = sum^ k M sup y < F k = G sup y <
198 79 adantr φ y 𝒫 Z Fin Fun G
199 198 adantr φ y 𝒫 Z Fin ¬ y = Fun G
200 189 82 eleqtrdi φ y 𝒫 Z Fin ¬ y = sup y < Z
201 85 ad2antrr φ y 𝒫 Z Fin ¬ y = Z = dom G
202 200 201 eleqtrd φ y 𝒫 Z Fin ¬ y = sup y < dom G
203 fvelrn Fun G sup y < dom G G sup y < ran G
204 199 202 203 syl2anc φ y 𝒫 Z Fin ¬ y = G sup y < ran G
205 197 204 eqeltrd φ y 𝒫 Z Fin ¬ y = sum^ k M sup y < F k ran G
206 suprub ran G ran G x z ran G z x sum^ k M sup y < F k ran G sum^ k M sup y < F k sup ran G <
207 168 170 172 205 206 syl31anc φ y 𝒫 Z Fin ¬ y = sum^ k M sup y < F k sup ran G <
208 147 156 158 166 207 xrletrd φ y 𝒫 Z Fin ¬ y = sum^ k y F k sup ran G <
209 136 208 pm2.61dan φ y 𝒫 Z Fin sum^ k y F k sup ran G <
210 209 ralrimiva φ y 𝒫 Z Fin sum^ k y F k sup ran G <
211 nfv k φ
212 211 7 142 60 sge0lefimpt φ sum^ k Z F k sup ran G < y 𝒫 Z Fin sum^ k y F k sup ran G <
213 210 212 mpbird φ sum^ k Z F k sup ran G <
214 62 213 eqbrtrd φ sum^ F sup ran G <
215 36 ssriv M j Z
216 215 a1i φ M j Z
217 7 142 216 sge0lessmpt φ sum^ k M j F k sum^ k Z F k
218 217 3ad2ant1 φ j Z G j = z sum^ k M j F k sum^ k Z F k
219 fzfid φ M j Fin
220 36 14 sylan2 φ k M j F k 0 +∞
221 219 220 sge0fsummpt φ sum^ k M j F k = k = M j F k
222 221 3ad2ant1 φ j Z G j = z sum^ k M j F k = k = M j F k
223 34 37 12 syl2anc φ j Z k M j F k = F k
224 34 37 190 syl2anc φ j Z k M j F k
225 223 33 224 fsumser φ j Z k = M j F k = seq M + F j
226 225 3adant3 φ j Z G j = z k = M j F k = seq M + F j
227 222 226 eqtrd φ j Z G j = z sum^ k M j F k = seq M + F j
228 194 fveq1i seq M + F j = G j
229 228 a1i φ j Z G j = z seq M + F j = G j
230 simp3 φ j Z G j = z G j = z
231 227 229 230 3eqtrrd φ j Z G j = z z = sum^ k M j F k
232 62 3ad2ant1 φ j Z G j = z sum^ F = sum^ k Z F k
233 231 232 breq12d φ j Z G j = z z sum^ F sum^ k M j F k sum^ k Z F k
234 218 233 mpbird φ j Z G j = z z sum^ F
235 234 3exp φ j Z G j = z z sum^ F
236 235 adantr φ z ran G j Z G j = z z sum^ F
237 236 rexlimdv φ z ran G j Z G j = z z sum^ F
238 107 237 mpd φ z ran G z sum^ F
239 238 ralrimiva φ z ran G z sum^ F
240 7 10 sge0cl φ sum^ F 0 +∞
241 59 ltpnfd φ sup ran G < < +∞
242 11 60 91 214 241 xrlelttrd φ sum^ F < +∞
243 11 91 242 xrgtned φ +∞ sum^ F
244 243 necomd φ sum^ F +∞
245 ge0xrre sum^ F 0 +∞ sum^ F +∞ sum^ F
246 240 244 245 syl2anc φ sum^ F
247 suprleub ran G ran G x z ran G z x sum^ F sup ran G < sum^ F z ran G z sum^ F
248 78 101 131 246 247 syl31anc φ sup ran G < sum^ F z ran G z sum^ F
249 239 248 mpbird φ sup ran G < sum^ F
250 11 60 214 249 xrletrid φ sum^ F = sup ran G <
251 climuni G B G sup ran G < B = sup ran G <
252 5 58 251 syl2anc φ B = sup ran G <
253 250 252 eqtr4d φ sum^ F = B