| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0isum.m |
|- ( ph -> M e. ZZ ) |
| 2 |
|
sge0isum.z |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
sge0isum.f |
|- ( ph -> F : Z --> ( 0 [,) +oo ) ) |
| 4 |
|
sge0isum.g |
|- G = seq M ( + , F ) |
| 5 |
|
sge0isum.gcnv |
|- ( ph -> G ~~> B ) |
| 6 |
2
|
fvexi |
|- Z e. _V |
| 7 |
6
|
a1i |
|- ( ph -> Z e. _V ) |
| 8 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 9 |
8
|
a1i |
|- ( ph -> ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) |
| 10 |
3 9
|
fssd |
|- ( ph -> F : Z --> ( 0 [,] +oo ) ) |
| 11 |
7 10
|
sge0xrcl |
|- ( ph -> ( sum^ ` F ) e. RR* ) |
| 12 |
|
eqidd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) |
| 13 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 14 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. ( 0 [,) +oo ) ) |
| 15 |
13 14
|
sselid |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 16 |
|
0xr |
|- 0 e. RR* |
| 17 |
16
|
a1i |
|- ( ( ph /\ k e. Z ) -> 0 e. RR* ) |
| 18 |
|
pnfxr |
|- +oo e. RR* |
| 19 |
18
|
a1i |
|- ( ( ph /\ k e. Z ) -> +oo e. RR* ) |
| 20 |
|
icogelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ ( F ` k ) e. ( 0 [,) +oo ) ) -> 0 <_ ( F ` k ) ) |
| 21 |
17 19 14 20
|
syl3anc |
|- ( ( ph /\ k e. Z ) -> 0 <_ ( F ` k ) ) |
| 22 |
|
seqex |
|- seq M ( + , F ) e. _V |
| 23 |
4 22
|
eqeltri |
|- G e. _V |
| 24 |
23
|
a1i |
|- ( ph -> G e. _V ) |
| 25 |
|
climcl |
|- ( G ~~> B -> B e. CC ) |
| 26 |
5 25
|
syl |
|- ( ph -> B e. CC ) |
| 27 |
|
breldmg |
|- ( ( G e. _V /\ B e. CC /\ G ~~> B ) -> G e. dom ~~> ) |
| 28 |
24 26 5 27
|
syl3anc |
|- ( ph -> G e. dom ~~> ) |
| 29 |
4
|
a1i |
|- ( ( ph /\ j e. Z ) -> G = seq M ( + , F ) ) |
| 30 |
29
|
fveq1d |
|- ( ( ph /\ j e. Z ) -> ( G ` j ) = ( seq M ( + , F ) ` j ) ) |
| 31 |
2
|
eleq2i |
|- ( j e. Z <-> j e. ( ZZ>= ` M ) ) |
| 32 |
31
|
biimpi |
|- ( j e. Z -> j e. ( ZZ>= ` M ) ) |
| 33 |
32
|
adantl |
|- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
| 34 |
|
simpll |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ph ) |
| 35 |
|
elfzuz |
|- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
| 36 |
35 2
|
eleqtrrdi |
|- ( k e. ( M ... j ) -> k e. Z ) |
| 37 |
36
|
adantl |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> k e. Z ) |
| 38 |
34 37 15
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. RR ) |
| 39 |
|
readdcl |
|- ( ( k e. RR /\ i e. RR ) -> ( k + i ) e. RR ) |
| 40 |
39
|
adantl |
|- ( ( ( ph /\ j e. Z ) /\ ( k e. RR /\ i e. RR ) ) -> ( k + i ) e. RR ) |
| 41 |
33 38 40
|
seqcl |
|- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. RR ) |
| 42 |
30 41
|
eqeltrd |
|- ( ( ph /\ j e. Z ) -> ( G ` j ) e. RR ) |
| 43 |
42
|
recnd |
|- ( ( ph /\ j e. Z ) -> ( G ` j ) e. CC ) |
| 44 |
43
|
ralrimiva |
|- ( ph -> A. j e. Z ( G ` j ) e. CC ) |
| 45 |
2
|
climbdd |
|- ( ( M e. ZZ /\ G e. dom ~~> /\ A. j e. Z ( G ` j ) e. CC ) -> E. x e. RR A. j e. Z ( abs ` ( G ` j ) ) <_ x ) |
| 46 |
1 28 44 45
|
syl3anc |
|- ( ph -> E. x e. RR A. j e. Z ( abs ` ( G ` j ) ) <_ x ) |
| 47 |
42
|
ad4ant13 |
|- ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ ( abs ` ( G ` j ) ) <_ x ) -> ( G ` j ) e. RR ) |
| 48 |
43
|
ad4ant13 |
|- ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ ( abs ` ( G ` j ) ) <_ x ) -> ( G ` j ) e. CC ) |
| 49 |
48
|
abscld |
|- ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ ( abs ` ( G ` j ) ) <_ x ) -> ( abs ` ( G ` j ) ) e. RR ) |
| 50 |
|
simpllr |
|- ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ ( abs ` ( G ` j ) ) <_ x ) -> x e. RR ) |
| 51 |
47
|
leabsd |
|- ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ ( abs ` ( G ` j ) ) <_ x ) -> ( G ` j ) <_ ( abs ` ( G ` j ) ) ) |
| 52 |
|
simpr |
|- ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ ( abs ` ( G ` j ) ) <_ x ) -> ( abs ` ( G ` j ) ) <_ x ) |
| 53 |
47 49 50 51 52
|
letrd |
|- ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ ( abs ` ( G ` j ) ) <_ x ) -> ( G ` j ) <_ x ) |
| 54 |
53
|
ex |
|- ( ( ( ph /\ x e. RR ) /\ j e. Z ) -> ( ( abs ` ( G ` j ) ) <_ x -> ( G ` j ) <_ x ) ) |
| 55 |
54
|
ralimdva |
|- ( ( ph /\ x e. RR ) -> ( A. j e. Z ( abs ` ( G ` j ) ) <_ x -> A. j e. Z ( G ` j ) <_ x ) ) |
| 56 |
55
|
reximdva |
|- ( ph -> ( E. x e. RR A. j e. Z ( abs ` ( G ` j ) ) <_ x -> E. x e. RR A. j e. Z ( G ` j ) <_ x ) ) |
| 57 |
46 56
|
mpd |
|- ( ph -> E. x e. RR A. j e. Z ( G ` j ) <_ x ) |
| 58 |
2 4 1 12 15 21 57
|
isumsup2 |
|- ( ph -> G ~~> sup ( ran G , RR , < ) ) |
| 59 |
2 1 58 42
|
climrecl |
|- ( ph -> sup ( ran G , RR , < ) e. RR ) |
| 60 |
59
|
rexrd |
|- ( ph -> sup ( ran G , RR , < ) e. RR* ) |
| 61 |
3
|
feqmptd |
|- ( ph -> F = ( k e. Z |-> ( F ` k ) ) ) |
| 62 |
61
|
fveq2d |
|- ( ph -> ( sum^ ` F ) = ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
| 63 |
|
mpteq1 |
|- ( y = (/) -> ( k e. y |-> ( F ` k ) ) = ( k e. (/) |-> ( F ` k ) ) ) |
| 64 |
63
|
fveq2d |
|- ( y = (/) -> ( sum^ ` ( k e. y |-> ( F ` k ) ) ) = ( sum^ ` ( k e. (/) |-> ( F ` k ) ) ) ) |
| 65 |
|
mpt0 |
|- ( k e. (/) |-> ( F ` k ) ) = (/) |
| 66 |
65
|
fveq2i |
|- ( sum^ ` ( k e. (/) |-> ( F ` k ) ) ) = ( sum^ ` (/) ) |
| 67 |
|
sge00 |
|- ( sum^ ` (/) ) = 0 |
| 68 |
66 67
|
eqtri |
|- ( sum^ ` ( k e. (/) |-> ( F ` k ) ) ) = 0 |
| 69 |
68
|
a1i |
|- ( y = (/) -> ( sum^ ` ( k e. (/) |-> ( F ` k ) ) ) = 0 ) |
| 70 |
64 69
|
eqtrd |
|- ( y = (/) -> ( sum^ ` ( k e. y |-> ( F ` k ) ) ) = 0 ) |
| 71 |
70
|
adantl |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ y = (/) ) -> ( sum^ ` ( k e. y |-> ( F ` k ) ) ) = 0 ) |
| 72 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 73 |
39
|
adantl |
|- ( ( ph /\ ( k e. RR /\ i e. RR ) ) -> ( k + i ) e. RR ) |
| 74 |
2 1 15 73
|
seqf |
|- ( ph -> seq M ( + , F ) : Z --> RR ) |
| 75 |
4
|
a1i |
|- ( ph -> G = seq M ( + , F ) ) |
| 76 |
75
|
feq1d |
|- ( ph -> ( G : Z --> RR <-> seq M ( + , F ) : Z --> RR ) ) |
| 77 |
74 76
|
mpbird |
|- ( ph -> G : Z --> RR ) |
| 78 |
77
|
frnd |
|- ( ph -> ran G C_ RR ) |
| 79 |
77
|
ffund |
|- ( ph -> Fun G ) |
| 80 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
| 81 |
1 80
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
| 82 |
2
|
eqcomi |
|- ( ZZ>= ` M ) = Z |
| 83 |
81 82
|
eleqtrdi |
|- ( ph -> M e. Z ) |
| 84 |
77
|
fdmd |
|- ( ph -> dom G = Z ) |
| 85 |
84
|
eqcomd |
|- ( ph -> Z = dom G ) |
| 86 |
83 85
|
eleqtrd |
|- ( ph -> M e. dom G ) |
| 87 |
|
fvelrn |
|- ( ( Fun G /\ M e. dom G ) -> ( G ` M ) e. ran G ) |
| 88 |
79 86 87
|
syl2anc |
|- ( ph -> ( G ` M ) e. ran G ) |
| 89 |
78 88
|
sseldd |
|- ( ph -> ( G ` M ) e. RR ) |
| 90 |
16
|
a1i |
|- ( ph -> 0 e. RR* ) |
| 91 |
18
|
a1i |
|- ( ph -> +oo e. RR* ) |
| 92 |
3 83
|
ffvelcdmd |
|- ( ph -> ( F ` M ) e. ( 0 [,) +oo ) ) |
| 93 |
|
icogelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ ( F ` M ) e. ( 0 [,) +oo ) ) -> 0 <_ ( F ` M ) ) |
| 94 |
90 91 92 93
|
syl3anc |
|- ( ph -> 0 <_ ( F ` M ) ) |
| 95 |
4
|
fveq1i |
|- ( G ` M ) = ( seq M ( + , F ) ` M ) |
| 96 |
95
|
a1i |
|- ( ph -> ( G ` M ) = ( seq M ( + , F ) ` M ) ) |
| 97 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( + , F ) ` M ) = ( F ` M ) ) |
| 98 |
1 97
|
syl |
|- ( ph -> ( seq M ( + , F ) ` M ) = ( F ` M ) ) |
| 99 |
96 98
|
eqtr2d |
|- ( ph -> ( F ` M ) = ( G ` M ) ) |
| 100 |
94 99
|
breqtrd |
|- ( ph -> 0 <_ ( G ` M ) ) |
| 101 |
88
|
ne0d |
|- ( ph -> ran G =/= (/) ) |
| 102 |
|
simpr |
|- ( ( ph /\ z e. ran G ) -> z e. ran G ) |
| 103 |
77
|
ffnd |
|- ( ph -> G Fn Z ) |
| 104 |
|
fvelrnb |
|- ( G Fn Z -> ( z e. ran G <-> E. j e. Z ( G ` j ) = z ) ) |
| 105 |
103 104
|
syl |
|- ( ph -> ( z e. ran G <-> E. j e. Z ( G ` j ) = z ) ) |
| 106 |
105
|
adantr |
|- ( ( ph /\ z e. ran G ) -> ( z e. ran G <-> E. j e. Z ( G ` j ) = z ) ) |
| 107 |
102 106
|
mpbid |
|- ( ( ph /\ z e. ran G ) -> E. j e. Z ( G ` j ) = z ) |
| 108 |
107
|
adantlr |
|- ( ( ( ph /\ A. j e. Z ( G ` j ) <_ x ) /\ z e. ran G ) -> E. j e. Z ( G ` j ) = z ) |
| 109 |
|
nfv |
|- F/ j ph |
| 110 |
|
nfra1 |
|- F/ j A. j e. Z ( G ` j ) <_ x |
| 111 |
109 110
|
nfan |
|- F/ j ( ph /\ A. j e. Z ( G ` j ) <_ x ) |
| 112 |
|
nfv |
|- F/ j z e. ran G |
| 113 |
111 112
|
nfan |
|- F/ j ( ( ph /\ A. j e. Z ( G ` j ) <_ x ) /\ z e. ran G ) |
| 114 |
|
nfv |
|- F/ j z <_ x |
| 115 |
|
rspa |
|- ( ( A. j e. Z ( G ` j ) <_ x /\ j e. Z ) -> ( G ` j ) <_ x ) |
| 116 |
115
|
3adant3 |
|- ( ( A. j e. Z ( G ` j ) <_ x /\ j e. Z /\ ( G ` j ) = z ) -> ( G ` j ) <_ x ) |
| 117 |
|
simp3 |
|- ( ( A. j e. Z ( G ` j ) <_ x /\ j e. Z /\ ( G ` j ) = z ) -> ( G ` j ) = z ) |
| 118 |
|
id |
|- ( ( G ` j ) = z -> ( G ` j ) = z ) |
| 119 |
118
|
eqcomd |
|- ( ( G ` j ) = z -> z = ( G ` j ) ) |
| 120 |
119
|
adantl |
|- ( ( ( G ` j ) <_ x /\ ( G ` j ) = z ) -> z = ( G ` j ) ) |
| 121 |
|
simpl |
|- ( ( ( G ` j ) <_ x /\ ( G ` j ) = z ) -> ( G ` j ) <_ x ) |
| 122 |
120 121
|
eqbrtrd |
|- ( ( ( G ` j ) <_ x /\ ( G ` j ) = z ) -> z <_ x ) |
| 123 |
116 117 122
|
syl2anc |
|- ( ( A. j e. Z ( G ` j ) <_ x /\ j e. Z /\ ( G ` j ) = z ) -> z <_ x ) |
| 124 |
123
|
3exp |
|- ( A. j e. Z ( G ` j ) <_ x -> ( j e. Z -> ( ( G ` j ) = z -> z <_ x ) ) ) |
| 125 |
124
|
ad2antlr |
|- ( ( ( ph /\ A. j e. Z ( G ` j ) <_ x ) /\ z e. ran G ) -> ( j e. Z -> ( ( G ` j ) = z -> z <_ x ) ) ) |
| 126 |
113 114 125
|
rexlimd |
|- ( ( ( ph /\ A. j e. Z ( G ` j ) <_ x ) /\ z e. ran G ) -> ( E. j e. Z ( G ` j ) = z -> z <_ x ) ) |
| 127 |
108 126
|
mpd |
|- ( ( ( ph /\ A. j e. Z ( G ` j ) <_ x ) /\ z e. ran G ) -> z <_ x ) |
| 128 |
127
|
ralrimiva |
|- ( ( ph /\ A. j e. Z ( G ` j ) <_ x ) -> A. z e. ran G z <_ x ) |
| 129 |
128
|
ex |
|- ( ph -> ( A. j e. Z ( G ` j ) <_ x -> A. z e. ran G z <_ x ) ) |
| 130 |
129
|
reximdv |
|- ( ph -> ( E. x e. RR A. j e. Z ( G ` j ) <_ x -> E. x e. RR A. z e. ran G z <_ x ) ) |
| 131 |
57 130
|
mpd |
|- ( ph -> E. x e. RR A. z e. ran G z <_ x ) |
| 132 |
|
suprub |
|- ( ( ( ran G C_ RR /\ ran G =/= (/) /\ E. x e. RR A. z e. ran G z <_ x ) /\ ( G ` M ) e. ran G ) -> ( G ` M ) <_ sup ( ran G , RR , < ) ) |
| 133 |
78 101 131 88 132
|
syl31anc |
|- ( ph -> ( G ` M ) <_ sup ( ran G , RR , < ) ) |
| 134 |
72 89 59 100 133
|
letrd |
|- ( ph -> 0 <_ sup ( ran G , RR , < ) ) |
| 135 |
134
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ y = (/) ) -> 0 <_ sup ( ran G , RR , < ) ) |
| 136 |
71 135
|
eqbrtrd |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ y = (/) ) -> ( sum^ ` ( k e. y |-> ( F ` k ) ) ) <_ sup ( ran G , RR , < ) ) |
| 137 |
|
simpr |
|- ( ( ph /\ y e. ( ~P Z i^i Fin ) ) -> y e. ( ~P Z i^i Fin ) ) |
| 138 |
|
simpll |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ k e. y ) -> ph ) |
| 139 |
|
elpwinss |
|- ( y e. ( ~P Z i^i Fin ) -> y C_ Z ) |
| 140 |
139
|
sselda |
|- ( ( y e. ( ~P Z i^i Fin ) /\ k e. y ) -> k e. Z ) |
| 141 |
140
|
adantll |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ k e. y ) -> k e. Z ) |
| 142 |
8 14
|
sselid |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. ( 0 [,] +oo ) ) |
| 143 |
138 141 142
|
syl2anc |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ k e. y ) -> ( F ` k ) e. ( 0 [,] +oo ) ) |
| 144 |
|
eqid |
|- ( k e. y |-> ( F ` k ) ) = ( k e. y |-> ( F ` k ) ) |
| 145 |
143 144
|
fmptd |
|- ( ( ph /\ y e. ( ~P Z i^i Fin ) ) -> ( k e. y |-> ( F ` k ) ) : y --> ( 0 [,] +oo ) ) |
| 146 |
137 145
|
sge0xrcl |
|- ( ( ph /\ y e. ( ~P Z i^i Fin ) ) -> ( sum^ ` ( k e. y |-> ( F ` k ) ) ) e. RR* ) |
| 147 |
146
|
adantr |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> ( sum^ ` ( k e. y |-> ( F ` k ) ) ) e. RR* ) |
| 148 |
|
fzfid |
|- ( ( ph /\ y e. ( ~P Z i^i Fin ) ) -> ( M ... sup ( y , RR , < ) ) e. Fin ) |
| 149 |
|
elfzuz |
|- ( k e. ( M ... sup ( y , RR , < ) ) -> k e. ( ZZ>= ` M ) ) |
| 150 |
149 82
|
eleqtrdi |
|- ( k e. ( M ... sup ( y , RR , < ) ) -> k e. Z ) |
| 151 |
150 142
|
sylan2 |
|- ( ( ph /\ k e. ( M ... sup ( y , RR , < ) ) ) -> ( F ` k ) e. ( 0 [,] +oo ) ) |
| 152 |
|
eqid |
|- ( k e. ( M ... sup ( y , RR , < ) ) |-> ( F ` k ) ) = ( k e. ( M ... sup ( y , RR , < ) ) |-> ( F ` k ) ) |
| 153 |
151 152
|
fmptd |
|- ( ph -> ( k e. ( M ... sup ( y , RR , < ) ) |-> ( F ` k ) ) : ( M ... sup ( y , RR , < ) ) --> ( 0 [,] +oo ) ) |
| 154 |
153
|
adantr |
|- ( ( ph /\ y e. ( ~P Z i^i Fin ) ) -> ( k e. ( M ... sup ( y , RR , < ) ) |-> ( F ` k ) ) : ( M ... sup ( y , RR , < ) ) --> ( 0 [,] +oo ) ) |
| 155 |
148 154
|
sge0xrcl |
|- ( ( ph /\ y e. ( ~P Z i^i Fin ) ) -> ( sum^ ` ( k e. ( M ... sup ( y , RR , < ) ) |-> ( F ` k ) ) ) e. RR* ) |
| 156 |
155
|
adantr |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> ( sum^ ` ( k e. ( M ... sup ( y , RR , < ) ) |-> ( F ` k ) ) ) e. RR* ) |
| 157 |
60
|
adantr |
|- ( ( ph /\ y e. ( ~P Z i^i Fin ) ) -> sup ( ran G , RR , < ) e. RR* ) |
| 158 |
157
|
adantr |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> sup ( ran G , RR , < ) e. RR* ) |
| 159 |
|
simpll |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ k e. ( M ... sup ( y , RR , < ) ) ) -> ph ) |
| 160 |
150
|
adantl |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ k e. ( M ... sup ( y , RR , < ) ) ) -> k e. Z ) |
| 161 |
159 160 142
|
syl2anc |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ k e. ( M ... sup ( y , RR , < ) ) ) -> ( F ` k ) e. ( 0 [,] +oo ) ) |
| 162 |
|
elinel2 |
|- ( y e. ( ~P Z i^i Fin ) -> y e. Fin ) |
| 163 |
2 139 162
|
ssuzfz |
|- ( y e. ( ~P Z i^i Fin ) -> y C_ ( M ... sup ( y , RR , < ) ) ) |
| 164 |
163
|
adantl |
|- ( ( ph /\ y e. ( ~P Z i^i Fin ) ) -> y C_ ( M ... sup ( y , RR , < ) ) ) |
| 165 |
148 161 164
|
sge0lessmpt |
|- ( ( ph /\ y e. ( ~P Z i^i Fin ) ) -> ( sum^ ` ( k e. y |-> ( F ` k ) ) ) <_ ( sum^ ` ( k e. ( M ... sup ( y , RR , < ) ) |-> ( F ` k ) ) ) ) |
| 166 |
165
|
adantr |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> ( sum^ ` ( k e. y |-> ( F ` k ) ) ) <_ ( sum^ ` ( k e. ( M ... sup ( y , RR , < ) ) |-> ( F ` k ) ) ) ) |
| 167 |
78
|
adantr |
|- ( ( ph /\ y e. ( ~P Z i^i Fin ) ) -> ran G C_ RR ) |
| 168 |
167
|
adantr |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> ran G C_ RR ) |
| 169 |
101
|
adantr |
|- ( ( ph /\ y e. ( ~P Z i^i Fin ) ) -> ran G =/= (/) ) |
| 170 |
169
|
adantr |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> ran G =/= (/) ) |
| 171 |
131
|
adantr |
|- ( ( ph /\ y e. ( ~P Z i^i Fin ) ) -> E. x e. RR A. z e. ran G z <_ x ) |
| 172 |
171
|
adantr |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> E. x e. RR A. z e. ran G z <_ x ) |
| 173 |
159 160 14
|
syl2anc |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ k e. ( M ... sup ( y , RR , < ) ) ) -> ( F ` k ) e. ( 0 [,) +oo ) ) |
| 174 |
148 173
|
sge0fsummpt |
|- ( ( ph /\ y e. ( ~P Z i^i Fin ) ) -> ( sum^ ` ( k e. ( M ... sup ( y , RR , < ) ) |-> ( F ` k ) ) ) = sum_ k e. ( M ... sup ( y , RR , < ) ) ( F ` k ) ) |
| 175 |
174
|
adantr |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> ( sum^ ` ( k e. ( M ... sup ( y , RR , < ) ) |-> ( F ` k ) ) ) = sum_ k e. ( M ... sup ( y , RR , < ) ) ( F ` k ) ) |
| 176 |
|
eqidd |
|- ( ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) /\ k e. ( M ... sup ( y , RR , < ) ) ) -> ( F ` k ) = ( F ` k ) ) |
| 177 |
139 2
|
sseqtrdi |
|- ( y e. ( ~P Z i^i Fin ) -> y C_ ( ZZ>= ` M ) ) |
| 178 |
177
|
adantr |
|- ( ( y e. ( ~P Z i^i Fin ) /\ -. y = (/) ) -> y C_ ( ZZ>= ` M ) ) |
| 179 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
| 180 |
2 179
|
eqsstri |
|- Z C_ ZZ |
| 181 |
139 180
|
sstrdi |
|- ( y e. ( ~P Z i^i Fin ) -> y C_ ZZ ) |
| 182 |
181
|
adantr |
|- ( ( y e. ( ~P Z i^i Fin ) /\ -. y = (/) ) -> y C_ ZZ ) |
| 183 |
|
neqne |
|- ( -. y = (/) -> y =/= (/) ) |
| 184 |
183
|
adantl |
|- ( ( y e. ( ~P Z i^i Fin ) /\ -. y = (/) ) -> y =/= (/) ) |
| 185 |
162
|
adantr |
|- ( ( y e. ( ~P Z i^i Fin ) /\ -. y = (/) ) -> y e. Fin ) |
| 186 |
|
suprfinzcl |
|- ( ( y C_ ZZ /\ y =/= (/) /\ y e. Fin ) -> sup ( y , RR , < ) e. y ) |
| 187 |
182 184 185 186
|
syl3anc |
|- ( ( y e. ( ~P Z i^i Fin ) /\ -. y = (/) ) -> sup ( y , RR , < ) e. y ) |
| 188 |
178 187
|
sseldd |
|- ( ( y e. ( ~P Z i^i Fin ) /\ -. y = (/) ) -> sup ( y , RR , < ) e. ( ZZ>= ` M ) ) |
| 189 |
188
|
adantll |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> sup ( y , RR , < ) e. ( ZZ>= ` M ) ) |
| 190 |
15
|
recnd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 191 |
159 160 190
|
syl2anc |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ k e. ( M ... sup ( y , RR , < ) ) ) -> ( F ` k ) e. CC ) |
| 192 |
191
|
adantlr |
|- ( ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) /\ k e. ( M ... sup ( y , RR , < ) ) ) -> ( F ` k ) e. CC ) |
| 193 |
176 189 192
|
fsumser |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> sum_ k e. ( M ... sup ( y , RR , < ) ) ( F ` k ) = ( seq M ( + , F ) ` sup ( y , RR , < ) ) ) |
| 194 |
4
|
eqcomi |
|- seq M ( + , F ) = G |
| 195 |
194
|
fveq1i |
|- ( seq M ( + , F ) ` sup ( y , RR , < ) ) = ( G ` sup ( y , RR , < ) ) |
| 196 |
195
|
a1i |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> ( seq M ( + , F ) ` sup ( y , RR , < ) ) = ( G ` sup ( y , RR , < ) ) ) |
| 197 |
175 193 196
|
3eqtrd |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> ( sum^ ` ( k e. ( M ... sup ( y , RR , < ) ) |-> ( F ` k ) ) ) = ( G ` sup ( y , RR , < ) ) ) |
| 198 |
79
|
adantr |
|- ( ( ph /\ y e. ( ~P Z i^i Fin ) ) -> Fun G ) |
| 199 |
198
|
adantr |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> Fun G ) |
| 200 |
189 82
|
eleqtrdi |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> sup ( y , RR , < ) e. Z ) |
| 201 |
85
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> Z = dom G ) |
| 202 |
200 201
|
eleqtrd |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> sup ( y , RR , < ) e. dom G ) |
| 203 |
|
fvelrn |
|- ( ( Fun G /\ sup ( y , RR , < ) e. dom G ) -> ( G ` sup ( y , RR , < ) ) e. ran G ) |
| 204 |
199 202 203
|
syl2anc |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> ( G ` sup ( y , RR , < ) ) e. ran G ) |
| 205 |
197 204
|
eqeltrd |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> ( sum^ ` ( k e. ( M ... sup ( y , RR , < ) ) |-> ( F ` k ) ) ) e. ran G ) |
| 206 |
|
suprub |
|- ( ( ( ran G C_ RR /\ ran G =/= (/) /\ E. x e. RR A. z e. ran G z <_ x ) /\ ( sum^ ` ( k e. ( M ... sup ( y , RR , < ) ) |-> ( F ` k ) ) ) e. ran G ) -> ( sum^ ` ( k e. ( M ... sup ( y , RR , < ) ) |-> ( F ` k ) ) ) <_ sup ( ran G , RR , < ) ) |
| 207 |
168 170 172 205 206
|
syl31anc |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> ( sum^ ` ( k e. ( M ... sup ( y , RR , < ) ) |-> ( F ` k ) ) ) <_ sup ( ran G , RR , < ) ) |
| 208 |
147 156 158 166 207
|
xrletrd |
|- ( ( ( ph /\ y e. ( ~P Z i^i Fin ) ) /\ -. y = (/) ) -> ( sum^ ` ( k e. y |-> ( F ` k ) ) ) <_ sup ( ran G , RR , < ) ) |
| 209 |
136 208
|
pm2.61dan |
|- ( ( ph /\ y e. ( ~P Z i^i Fin ) ) -> ( sum^ ` ( k e. y |-> ( F ` k ) ) ) <_ sup ( ran G , RR , < ) ) |
| 210 |
209
|
ralrimiva |
|- ( ph -> A. y e. ( ~P Z i^i Fin ) ( sum^ ` ( k e. y |-> ( F ` k ) ) ) <_ sup ( ran G , RR , < ) ) |
| 211 |
|
nfv |
|- F/ k ph |
| 212 |
211 7 142 60
|
sge0lefimpt |
|- ( ph -> ( ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) <_ sup ( ran G , RR , < ) <-> A. y e. ( ~P Z i^i Fin ) ( sum^ ` ( k e. y |-> ( F ` k ) ) ) <_ sup ( ran G , RR , < ) ) ) |
| 213 |
210 212
|
mpbird |
|- ( ph -> ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) <_ sup ( ran G , RR , < ) ) |
| 214 |
62 213
|
eqbrtrd |
|- ( ph -> ( sum^ ` F ) <_ sup ( ran G , RR , < ) ) |
| 215 |
36
|
ssriv |
|- ( M ... j ) C_ Z |
| 216 |
215
|
a1i |
|- ( ph -> ( M ... j ) C_ Z ) |
| 217 |
7 142 216
|
sge0lessmpt |
|- ( ph -> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) <_ ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
| 218 |
217
|
3ad2ant1 |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) <_ ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
| 219 |
|
fzfid |
|- ( ph -> ( M ... j ) e. Fin ) |
| 220 |
36 14
|
sylan2 |
|- ( ( ph /\ k e. ( M ... j ) ) -> ( F ` k ) e. ( 0 [,) +oo ) ) |
| 221 |
219 220
|
sge0fsummpt |
|- ( ph -> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) = sum_ k e. ( M ... j ) ( F ` k ) ) |
| 222 |
221
|
3ad2ant1 |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) = sum_ k e. ( M ... j ) ( F ` k ) ) |
| 223 |
34 37 12
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) = ( F ` k ) ) |
| 224 |
34 37 190
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
| 225 |
223 33 224
|
fsumser |
|- ( ( ph /\ j e. Z ) -> sum_ k e. ( M ... j ) ( F ` k ) = ( seq M ( + , F ) ` j ) ) |
| 226 |
225
|
3adant3 |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> sum_ k e. ( M ... j ) ( F ` k ) = ( seq M ( + , F ) ` j ) ) |
| 227 |
222 226
|
eqtrd |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) = ( seq M ( + , F ) ` j ) ) |
| 228 |
194
|
fveq1i |
|- ( seq M ( + , F ) ` j ) = ( G ` j ) |
| 229 |
228
|
a1i |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( seq M ( + , F ) ` j ) = ( G ` j ) ) |
| 230 |
|
simp3 |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( G ` j ) = z ) |
| 231 |
227 229 230
|
3eqtrrd |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> z = ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) ) |
| 232 |
62
|
3ad2ant1 |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( sum^ ` F ) = ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) |
| 233 |
231 232
|
breq12d |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> ( z <_ ( sum^ ` F ) <-> ( sum^ ` ( k e. ( M ... j ) |-> ( F ` k ) ) ) <_ ( sum^ ` ( k e. Z |-> ( F ` k ) ) ) ) ) |
| 234 |
218 233
|
mpbird |
|- ( ( ph /\ j e. Z /\ ( G ` j ) = z ) -> z <_ ( sum^ ` F ) ) |
| 235 |
234
|
3exp |
|- ( ph -> ( j e. Z -> ( ( G ` j ) = z -> z <_ ( sum^ ` F ) ) ) ) |
| 236 |
235
|
adantr |
|- ( ( ph /\ z e. ran G ) -> ( j e. Z -> ( ( G ` j ) = z -> z <_ ( sum^ ` F ) ) ) ) |
| 237 |
236
|
rexlimdv |
|- ( ( ph /\ z e. ran G ) -> ( E. j e. Z ( G ` j ) = z -> z <_ ( sum^ ` F ) ) ) |
| 238 |
107 237
|
mpd |
|- ( ( ph /\ z e. ran G ) -> z <_ ( sum^ ` F ) ) |
| 239 |
238
|
ralrimiva |
|- ( ph -> A. z e. ran G z <_ ( sum^ ` F ) ) |
| 240 |
7 10
|
sge0cl |
|- ( ph -> ( sum^ ` F ) e. ( 0 [,] +oo ) ) |
| 241 |
59
|
ltpnfd |
|- ( ph -> sup ( ran G , RR , < ) < +oo ) |
| 242 |
11 60 91 214 241
|
xrlelttrd |
|- ( ph -> ( sum^ ` F ) < +oo ) |
| 243 |
11 91 242
|
xrgtned |
|- ( ph -> +oo =/= ( sum^ ` F ) ) |
| 244 |
243
|
necomd |
|- ( ph -> ( sum^ ` F ) =/= +oo ) |
| 245 |
|
ge0xrre |
|- ( ( ( sum^ ` F ) e. ( 0 [,] +oo ) /\ ( sum^ ` F ) =/= +oo ) -> ( sum^ ` F ) e. RR ) |
| 246 |
240 244 245
|
syl2anc |
|- ( ph -> ( sum^ ` F ) e. RR ) |
| 247 |
|
suprleub |
|- ( ( ( ran G C_ RR /\ ran G =/= (/) /\ E. x e. RR A. z e. ran G z <_ x ) /\ ( sum^ ` F ) e. RR ) -> ( sup ( ran G , RR , < ) <_ ( sum^ ` F ) <-> A. z e. ran G z <_ ( sum^ ` F ) ) ) |
| 248 |
78 101 131 246 247
|
syl31anc |
|- ( ph -> ( sup ( ran G , RR , < ) <_ ( sum^ ` F ) <-> A. z e. ran G z <_ ( sum^ ` F ) ) ) |
| 249 |
239 248
|
mpbird |
|- ( ph -> sup ( ran G , RR , < ) <_ ( sum^ ` F ) ) |
| 250 |
11 60 214 249
|
xrletrid |
|- ( ph -> ( sum^ ` F ) = sup ( ran G , RR , < ) ) |
| 251 |
|
climuni |
|- ( ( G ~~> B /\ G ~~> sup ( ran G , RR , < ) ) -> B = sup ( ran G , RR , < ) ) |
| 252 |
5 58 251
|
syl2anc |
|- ( ph -> B = sup ( ran G , RR , < ) ) |
| 253 |
250 252
|
eqtr4d |
|- ( ph -> ( sum^ ` F ) = B ) |