Step |
Hyp |
Ref |
Expression |
1 |
|
sge0isum.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
sge0isum.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
sge0isum.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( 0 [,) +∞ ) ) |
4 |
|
sge0isum.g |
⊢ 𝐺 = seq 𝑀 ( + , 𝐹 ) |
5 |
|
sge0isum.gcnv |
⊢ ( 𝜑 → 𝐺 ⇝ 𝐵 ) |
6 |
2
|
fvexi |
⊢ 𝑍 ∈ V |
7 |
6
|
a1i |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
8 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) |
10 |
3 9
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( 0 [,] +∞ ) ) |
11 |
7 10
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ∈ ℝ* ) |
12 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
13 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
14 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 0 [,) +∞ ) ) |
15 |
13 14
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
16 |
|
0xr |
⊢ 0 ∈ ℝ* |
17 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ∈ ℝ* ) |
18 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
19 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → +∞ ∈ ℝ* ) |
20 |
|
icogelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 0 [,) +∞ ) ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
21 |
17 19 14 20
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
22 |
|
seqex |
⊢ seq 𝑀 ( + , 𝐹 ) ∈ V |
23 |
4 22
|
eqeltri |
⊢ 𝐺 ∈ V |
24 |
23
|
a1i |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
25 |
|
climcl |
⊢ ( 𝐺 ⇝ 𝐵 → 𝐵 ∈ ℂ ) |
26 |
5 25
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
27 |
|
breldmg |
⊢ ( ( 𝐺 ∈ V ∧ 𝐵 ∈ ℂ ∧ 𝐺 ⇝ 𝐵 ) → 𝐺 ∈ dom ⇝ ) |
28 |
24 26 5 27
|
syl3anc |
⊢ ( 𝜑 → 𝐺 ∈ dom ⇝ ) |
29 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐺 = seq 𝑀 ( + , 𝐹 ) ) |
30 |
29
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) |
31 |
2
|
eleq2i |
⊢ ( 𝑗 ∈ 𝑍 ↔ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
32 |
31
|
biimpi |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
34 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → 𝜑 ) |
35 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
36 |
35 2
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ 𝑍 ) |
37 |
36
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
38 |
34 37 15
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
39 |
|
readdcl |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ ) → ( 𝑘 + 𝑖 ) ∈ ℝ ) |
40 |
39
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ ) ) → ( 𝑘 + 𝑖 ) ∈ ℝ ) |
41 |
33 38 40
|
seqcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
42 |
30 41
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) ∈ ℝ ) |
43 |
42
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) ∈ ℂ ) |
44 |
43
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ∈ ℂ ) |
45 |
2
|
climbdd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐺 ∈ dom ⇝ ∧ ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ∈ ℂ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( abs ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ 𝑥 ) |
46 |
1 28 44 45
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( abs ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ 𝑥 ) |
47 |
42
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( abs ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ 𝑥 ) → ( 𝐺 ‘ 𝑗 ) ∈ ℝ ) |
48 |
43
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( abs ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ 𝑥 ) → ( 𝐺 ‘ 𝑗 ) ∈ ℂ ) |
49 |
48
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( abs ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ 𝑥 ) → ( abs ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
50 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( abs ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ 𝑥 ) → 𝑥 ∈ ℝ ) |
51 |
47
|
leabsd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( abs ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ 𝑥 ) → ( 𝐺 ‘ 𝑗 ) ≤ ( abs ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
52 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( abs ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ 𝑥 ) → ( abs ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ 𝑥 ) |
53 |
47 49 50 51 52
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( abs ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ 𝑥 ) → ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) |
54 |
53
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) → ( ( abs ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ 𝑥 → ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) ) |
55 |
54
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑗 ∈ 𝑍 ( abs ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ 𝑥 → ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) ) |
56 |
55
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( abs ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) ) |
57 |
46 56
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) |
58 |
2 4 1 12 15 21 57
|
isumsup2 |
⊢ ( 𝜑 → 𝐺 ⇝ sup ( ran 𝐺 , ℝ , < ) ) |
59 |
2 1 58 42
|
climrecl |
⊢ ( 𝜑 → sup ( ran 𝐺 , ℝ , < ) ∈ ℝ ) |
60 |
59
|
rexrd |
⊢ ( 𝜑 → sup ( ran 𝐺 , ℝ , < ) ∈ ℝ* ) |
61 |
3
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
62 |
61
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = ( Σ^ ‘ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
63 |
|
mpteq1 |
⊢ ( 𝑦 = ∅ → ( 𝑘 ∈ 𝑦 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
64 |
63
|
fveq2d |
⊢ ( 𝑦 = ∅ → ( Σ^ ‘ ( 𝑘 ∈ 𝑦 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
65 |
|
mpt0 |
⊢ ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) = ∅ |
66 |
65
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( Σ^ ‘ ∅ ) |
67 |
|
sge00 |
⊢ ( Σ^ ‘ ∅ ) = 0 |
68 |
66 67
|
eqtri |
⊢ ( Σ^ ‘ ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 |
69 |
68
|
a1i |
⊢ ( 𝑦 = ∅ → ( Σ^ ‘ ( 𝑘 ∈ ∅ ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ) |
70 |
64 69
|
eqtrd |
⊢ ( 𝑦 = ∅ → ( Σ^ ‘ ( 𝑘 ∈ 𝑦 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ) |
71 |
70
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘 ∈ 𝑦 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = 0 ) |
72 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
73 |
39
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ ) ) → ( 𝑘 + 𝑖 ) ∈ ℝ ) |
74 |
2 1 15 73
|
seqf |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |
75 |
4
|
a1i |
⊢ ( 𝜑 → 𝐺 = seq 𝑀 ( + , 𝐹 ) ) |
76 |
75
|
feq1d |
⊢ ( 𝜑 → ( 𝐺 : 𝑍 ⟶ ℝ ↔ seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) ) |
77 |
74 76
|
mpbird |
⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ ℝ ) |
78 |
77
|
frnd |
⊢ ( 𝜑 → ran 𝐺 ⊆ ℝ ) |
79 |
77
|
ffund |
⊢ ( 𝜑 → Fun 𝐺 ) |
80 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
81 |
1 80
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
82 |
2
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑀 ) = 𝑍 |
83 |
81 82
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
84 |
77
|
fdmd |
⊢ ( 𝜑 → dom 𝐺 = 𝑍 ) |
85 |
84
|
eqcomd |
⊢ ( 𝜑 → 𝑍 = dom 𝐺 ) |
86 |
83 85
|
eleqtrd |
⊢ ( 𝜑 → 𝑀 ∈ dom 𝐺 ) |
87 |
|
fvelrn |
⊢ ( ( Fun 𝐺 ∧ 𝑀 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑀 ) ∈ ran 𝐺 ) |
88 |
79 86 87
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) ∈ ran 𝐺 ) |
89 |
78 88
|
sseldd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) ∈ ℝ ) |
90 |
16
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
91 |
18
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
92 |
3 83
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ( 0 [,) +∞ ) ) |
93 |
|
icogelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐹 ‘ 𝑀 ) ∈ ( 0 [,) +∞ ) ) → 0 ≤ ( 𝐹 ‘ 𝑀 ) ) |
94 |
90 91 92 93
|
syl3anc |
⊢ ( 𝜑 → 0 ≤ ( 𝐹 ‘ 𝑀 ) ) |
95 |
4
|
fveq1i |
⊢ ( 𝐺 ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) |
96 |
95
|
a1i |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) |
97 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
98 |
1 97
|
syl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
99 |
96 98
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) |
100 |
94 99
|
breqtrd |
⊢ ( 𝜑 → 0 ≤ ( 𝐺 ‘ 𝑀 ) ) |
101 |
88
|
ne0d |
⊢ ( 𝜑 → ran 𝐺 ≠ ∅ ) |
102 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ran 𝐺 ) |
103 |
77
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝑍 ) |
104 |
|
fvelrnb |
⊢ ( 𝐺 Fn 𝑍 → ( 𝑧 ∈ ran 𝐺 ↔ ∃ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) = 𝑧 ) ) |
105 |
103 104
|
syl |
⊢ ( 𝜑 → ( 𝑧 ∈ ran 𝐺 ↔ ∃ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) = 𝑧 ) ) |
106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑧 ∈ ran 𝐺 ↔ ∃ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) = 𝑧 ) ) |
107 |
102 106
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ∃ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) = 𝑧 ) |
108 |
107
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) ∧ 𝑧 ∈ ran 𝐺 ) → ∃ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) = 𝑧 ) |
109 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
110 |
|
nfra1 |
⊢ Ⅎ 𝑗 ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 |
111 |
109 110
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) |
112 |
|
nfv |
⊢ Ⅎ 𝑗 𝑧 ∈ ran 𝐺 |
113 |
111 112
|
nfan |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) ∧ 𝑧 ∈ ran 𝐺 ) |
114 |
|
nfv |
⊢ Ⅎ 𝑗 𝑧 ≤ 𝑥 |
115 |
|
rspa |
⊢ ( ( ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) |
116 |
115
|
3adant3 |
⊢ ( ( ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑗 ∈ 𝑍 ∧ ( 𝐺 ‘ 𝑗 ) = 𝑧 ) → ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) |
117 |
|
simp3 |
⊢ ( ( ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑗 ∈ 𝑍 ∧ ( 𝐺 ‘ 𝑗 ) = 𝑧 ) → ( 𝐺 ‘ 𝑗 ) = 𝑧 ) |
118 |
|
id |
⊢ ( ( 𝐺 ‘ 𝑗 ) = 𝑧 → ( 𝐺 ‘ 𝑗 ) = 𝑧 ) |
119 |
118
|
eqcomd |
⊢ ( ( 𝐺 ‘ 𝑗 ) = 𝑧 → 𝑧 = ( 𝐺 ‘ 𝑗 ) ) |
120 |
119
|
adantl |
⊢ ( ( ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ∧ ( 𝐺 ‘ 𝑗 ) = 𝑧 ) → 𝑧 = ( 𝐺 ‘ 𝑗 ) ) |
121 |
|
simpl |
⊢ ( ( ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ∧ ( 𝐺 ‘ 𝑗 ) = 𝑧 ) → ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) |
122 |
120 121
|
eqbrtrd |
⊢ ( ( ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ∧ ( 𝐺 ‘ 𝑗 ) = 𝑧 ) → 𝑧 ≤ 𝑥 ) |
123 |
116 117 122
|
syl2anc |
⊢ ( ( ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ∧ 𝑗 ∈ 𝑍 ∧ ( 𝐺 ‘ 𝑗 ) = 𝑧 ) → 𝑧 ≤ 𝑥 ) |
124 |
123
|
3exp |
⊢ ( ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 → ( 𝑗 ∈ 𝑍 → ( ( 𝐺 ‘ 𝑗 ) = 𝑧 → 𝑧 ≤ 𝑥 ) ) ) |
125 |
124
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑗 ∈ 𝑍 → ( ( 𝐺 ‘ 𝑗 ) = 𝑧 → 𝑧 ≤ 𝑥 ) ) ) |
126 |
113 114 125
|
rexlimd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ∃ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) = 𝑧 → 𝑧 ≤ 𝑥 ) ) |
127 |
108 126
|
mpd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ≤ 𝑥 ) |
128 |
127
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) → ∀ 𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥 ) |
129 |
128
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 → ∀ 𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥 ) ) |
130 |
129
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥 ) ) |
131 |
57 130
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥 ) |
132 |
|
suprub |
⊢ ( ( ( ran 𝐺 ⊆ ℝ ∧ ran 𝐺 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥 ) ∧ ( 𝐺 ‘ 𝑀 ) ∈ ran 𝐺 ) → ( 𝐺 ‘ 𝑀 ) ≤ sup ( ran 𝐺 , ℝ , < ) ) |
133 |
78 101 131 88 132
|
syl31anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) ≤ sup ( ran 𝐺 , ℝ , < ) ) |
134 |
72 89 59 100 133
|
letrd |
⊢ ( 𝜑 → 0 ≤ sup ( ran 𝐺 , ℝ , < ) ) |
135 |
134
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑦 = ∅ ) → 0 ≤ sup ( ran 𝐺 , ℝ , < ) ) |
136 |
71 135
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘 ∈ 𝑦 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) ) |
137 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) |
138 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝜑 ) |
139 |
|
elpwinss |
⊢ ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑦 ⊆ 𝑍 ) |
140 |
139
|
sselda |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝑍 ) |
141 |
140
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝑍 ) |
142 |
8 14
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 0 [,] +∞ ) ) |
143 |
138 141 142
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 0 [,] +∞ ) ) |
144 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑦 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝑦 ↦ ( 𝐹 ‘ 𝑘 ) ) |
145 |
143 144
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( 𝑘 ∈ 𝑦 ↦ ( 𝐹 ‘ 𝑘 ) ) : 𝑦 ⟶ ( 0 [,] +∞ ) ) |
146 |
137 145
|
sge0xrcl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑘 ∈ 𝑦 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ* ) |
147 |
146
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘 ∈ 𝑦 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ* ) |
148 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ∈ Fin ) |
149 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
150 |
149 82
|
eleqtrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) → 𝑘 ∈ 𝑍 ) |
151 |
150 142
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 0 [,] +∞ ) ) |
152 |
|
eqid |
⊢ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹 ‘ 𝑘 ) ) |
153 |
151 152
|
fmptd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹 ‘ 𝑘 ) ) : ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ⟶ ( 0 [,] +∞ ) ) |
154 |
153
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹 ‘ 𝑘 ) ) : ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ⟶ ( 0 [,] +∞ ) ) |
155 |
148 154
|
sge0xrcl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ* ) |
156 |
155
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℝ* ) |
157 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → sup ( ran 𝐺 , ℝ , < ) ∈ ℝ* ) |
158 |
157
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → sup ( ran 𝐺 , ℝ , < ) ∈ ℝ* ) |
159 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) → 𝜑 ) |
160 |
150
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) → 𝑘 ∈ 𝑍 ) |
161 |
159 160 142
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 0 [,] +∞ ) ) |
162 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑦 ∈ Fin ) |
163 |
2 139 162
|
ssuzfz |
⊢ ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑦 ⊆ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) |
164 |
163
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑦 ⊆ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) |
165 |
148 161 164
|
sge0lessmpt |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑘 ∈ 𝑦 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
166 |
165
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘 ∈ 𝑦 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
167 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ran 𝐺 ⊆ ℝ ) |
168 |
167
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ran 𝐺 ⊆ ℝ ) |
169 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ran 𝐺 ≠ ∅ ) |
170 |
169
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ran 𝐺 ≠ ∅ ) |
171 |
131
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥 ) |
172 |
171
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥 ) |
173 |
159 160 14
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 0 [,) +∞ ) ) |
174 |
148 173
|
sge0fsummpt |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ( 𝐹 ‘ 𝑘 ) ) |
175 |
174
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ( 𝐹 ‘ 𝑘 ) ) |
176 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) ∧ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
177 |
139 2
|
sseqtrdi |
⊢ ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑦 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
178 |
177
|
adantr |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
179 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
180 |
2 179
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
181 |
139 180
|
sstrdi |
⊢ ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑦 ⊆ ℤ ) |
182 |
181
|
adantr |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 ⊆ ℤ ) |
183 |
|
neqne |
⊢ ( ¬ 𝑦 = ∅ → 𝑦 ≠ ∅ ) |
184 |
183
|
adantl |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 ≠ ∅ ) |
185 |
162
|
adantr |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 ∈ Fin ) |
186 |
|
suprfinzcl |
⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin ) → sup ( 𝑦 , ℝ , < ) ∈ 𝑦 ) |
187 |
182 184 185 186
|
syl3anc |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ ¬ 𝑦 = ∅ ) → sup ( 𝑦 , ℝ , < ) ∈ 𝑦 ) |
188 |
178 187
|
sseldd |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ ¬ 𝑦 = ∅ ) → sup ( 𝑦 , ℝ , < ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
189 |
188
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → sup ( 𝑦 , ℝ , < ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
190 |
15
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
191 |
159 160 190
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
192 |
191
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) ∧ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
193 |
176 189 192
|
fsumser |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → Σ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ sup ( 𝑦 , ℝ , < ) ) ) |
194 |
4
|
eqcomi |
⊢ seq 𝑀 ( + , 𝐹 ) = 𝐺 |
195 |
194
|
fveq1i |
⊢ ( seq 𝑀 ( + , 𝐹 ) ‘ sup ( 𝑦 , ℝ , < ) ) = ( 𝐺 ‘ sup ( 𝑦 , ℝ , < ) ) |
196 |
195
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( seq 𝑀 ( + , 𝐹 ) ‘ sup ( 𝑦 , ℝ , < ) ) = ( 𝐺 ‘ sup ( 𝑦 , ℝ , < ) ) ) |
197 |
175 193 196
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝐺 ‘ sup ( 𝑦 , ℝ , < ) ) ) |
198 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → Fun 𝐺 ) |
199 |
198
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → Fun 𝐺 ) |
200 |
189 82
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → sup ( 𝑦 , ℝ , < ) ∈ 𝑍 ) |
201 |
85
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑍 = dom 𝐺 ) |
202 |
200 201
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → sup ( 𝑦 , ℝ , < ) ∈ dom 𝐺 ) |
203 |
|
fvelrn |
⊢ ( ( Fun 𝐺 ∧ sup ( 𝑦 , ℝ , < ) ∈ dom 𝐺 ) → ( 𝐺 ‘ sup ( 𝑦 , ℝ , < ) ) ∈ ran 𝐺 ) |
204 |
199 202 203
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( 𝐺 ‘ sup ( 𝑦 , ℝ , < ) ) ∈ ran 𝐺 ) |
205 |
197 204
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ran 𝐺 ) |
206 |
|
suprub |
⊢ ( ( ( ran 𝐺 ⊆ ℝ ∧ ran 𝐺 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥 ) ∧ ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ran 𝐺 ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) ) |
207 |
168 170 172 205 206
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) ) |
208 |
147 156 158 166 207
|
xrletrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘 ∈ 𝑦 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) ) |
209 |
136 208
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑘 ∈ 𝑦 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) ) |
210 |
209
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ( Σ^ ‘ ( 𝑘 ∈ 𝑦 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) ) |
211 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
212 |
211 7 142 60
|
sge0lefimpt |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) ↔ ∀ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ( Σ^ ‘ ( 𝑘 ∈ 𝑦 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) ) ) |
213 |
210 212
|
mpbird |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) ) |
214 |
62 213
|
eqbrtrd |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ≤ sup ( ran 𝐺 , ℝ , < ) ) |
215 |
36
|
ssriv |
⊢ ( 𝑀 ... 𝑗 ) ⊆ 𝑍 |
216 |
215
|
a1i |
⊢ ( 𝜑 → ( 𝑀 ... 𝑗 ) ⊆ 𝑍 ) |
217 |
7 142 216
|
sge0lessmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( Σ^ ‘ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
218 |
217
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( 𝐺 ‘ 𝑗 ) = 𝑧 ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( Σ^ ‘ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
219 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... 𝑗 ) ∈ Fin ) |
220 |
36 14
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 0 [,) +∞ ) ) |
221 |
219 220
|
sge0fsummpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) ) |
222 |
221
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( 𝐺 ‘ 𝑗 ) = 𝑧 ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) ) |
223 |
34 37 12
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
224 |
34 37 190
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
225 |
223 33 224
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) |
226 |
225
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( 𝐺 ‘ 𝑗 ) = 𝑧 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) |
227 |
222 226
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( 𝐺 ‘ 𝑗 ) = 𝑧 ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) |
228 |
194
|
fveq1i |
⊢ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( 𝐺 ‘ 𝑗 ) |
229 |
228
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( 𝐺 ‘ 𝑗 ) = 𝑧 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( 𝐺 ‘ 𝑗 ) ) |
230 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( 𝐺 ‘ 𝑗 ) = 𝑧 ) → ( 𝐺 ‘ 𝑗 ) = 𝑧 ) |
231 |
227 229 230
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( 𝐺 ‘ 𝑗 ) = 𝑧 ) → 𝑧 = ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
232 |
62
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( 𝐺 ‘ 𝑗 ) = 𝑧 ) → ( Σ^ ‘ 𝐹 ) = ( Σ^ ‘ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
233 |
231 232
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( 𝐺 ‘ 𝑗 ) = 𝑧 ) → ( 𝑧 ≤ ( Σ^ ‘ 𝐹 ) ↔ ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ≤ ( Σ^ ‘ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
234 |
218 233
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( 𝐺 ‘ 𝑗 ) = 𝑧 ) → 𝑧 ≤ ( Σ^ ‘ 𝐹 ) ) |
235 |
234
|
3exp |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 → ( ( 𝐺 ‘ 𝑗 ) = 𝑧 → 𝑧 ≤ ( Σ^ ‘ 𝐹 ) ) ) ) |
236 |
235
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑗 ∈ 𝑍 → ( ( 𝐺 ‘ 𝑗 ) = 𝑧 → 𝑧 ≤ ( Σ^ ‘ 𝐹 ) ) ) ) |
237 |
236
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ( ∃ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) = 𝑧 → 𝑧 ≤ ( Σ^ ‘ 𝐹 ) ) ) |
238 |
107 237
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ≤ ( Σ^ ‘ 𝐹 ) ) |
239 |
238
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ran 𝐺 𝑧 ≤ ( Σ^ ‘ 𝐹 ) ) |
240 |
7 10
|
sge0cl |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ∈ ( 0 [,] +∞ ) ) |
241 |
59
|
ltpnfd |
⊢ ( 𝜑 → sup ( ran 𝐺 , ℝ , < ) < +∞ ) |
242 |
11 60 91 214 241
|
xrlelttrd |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) < +∞ ) |
243 |
11 91 242
|
xrgtned |
⊢ ( 𝜑 → +∞ ≠ ( Σ^ ‘ 𝐹 ) ) |
244 |
243
|
necomd |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ≠ +∞ ) |
245 |
|
ge0xrre |
⊢ ( ( ( Σ^ ‘ 𝐹 ) ∈ ( 0 [,] +∞ ) ∧ ( Σ^ ‘ 𝐹 ) ≠ +∞ ) → ( Σ^ ‘ 𝐹 ) ∈ ℝ ) |
246 |
240 244 245
|
syl2anc |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ∈ ℝ ) |
247 |
|
suprleub |
⊢ ( ( ( ran 𝐺 ⊆ ℝ ∧ ran 𝐺 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐺 𝑧 ≤ 𝑥 ) ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( sup ( ran 𝐺 , ℝ , < ) ≤ ( Σ^ ‘ 𝐹 ) ↔ ∀ 𝑧 ∈ ran 𝐺 𝑧 ≤ ( Σ^ ‘ 𝐹 ) ) ) |
248 |
78 101 131 246 247
|
syl31anc |
⊢ ( 𝜑 → ( sup ( ran 𝐺 , ℝ , < ) ≤ ( Σ^ ‘ 𝐹 ) ↔ ∀ 𝑧 ∈ ran 𝐺 𝑧 ≤ ( Σ^ ‘ 𝐹 ) ) ) |
249 |
239 248
|
mpbird |
⊢ ( 𝜑 → sup ( ran 𝐺 , ℝ , < ) ≤ ( Σ^ ‘ 𝐹 ) ) |
250 |
11 60 214 249
|
xrletrid |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = sup ( ran 𝐺 , ℝ , < ) ) |
251 |
|
climuni |
⊢ ( ( 𝐺 ⇝ 𝐵 ∧ 𝐺 ⇝ sup ( ran 𝐺 , ℝ , < ) ) → 𝐵 = sup ( ran 𝐺 , ℝ , < ) ) |
252 |
5 58 251
|
syl2anc |
⊢ ( 𝜑 → 𝐵 = sup ( ran 𝐺 , ℝ , < ) ) |
253 |
250 252
|
eqtr4d |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = 𝐵 ) |