Metamath Proof Explorer


Theorem sge0isum

Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0isum.m ( 𝜑𝑀 ∈ ℤ )
sge0isum.z 𝑍 = ( ℤ𝑀 )
sge0isum.f ( 𝜑𝐹 : 𝑍 ⟶ ( 0 [,) +∞ ) )
sge0isum.g 𝐺 = seq 𝑀 ( + , 𝐹 )
sge0isum.gcnv ( 𝜑𝐺𝐵 )
Assertion sge0isum ( 𝜑 → ( Σ^𝐹 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 sge0isum.m ( 𝜑𝑀 ∈ ℤ )
2 sge0isum.z 𝑍 = ( ℤ𝑀 )
3 sge0isum.f ( 𝜑𝐹 : 𝑍 ⟶ ( 0 [,) +∞ ) )
4 sge0isum.g 𝐺 = seq 𝑀 ( + , 𝐹 )
5 sge0isum.gcnv ( 𝜑𝐺𝐵 )
6 2 fvexi 𝑍 ∈ V
7 6 a1i ( 𝜑𝑍 ∈ V )
8 icossicc ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ )
9 8 a1i ( 𝜑 → ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) )
10 3 9 fssd ( 𝜑𝐹 : 𝑍 ⟶ ( 0 [,] +∞ ) )
11 7 10 sge0xrcl ( 𝜑 → ( Σ^𝐹 ) ∈ ℝ* )
12 eqidd ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = ( 𝐹𝑘 ) )
13 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
14 3 ffvelrnda ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ( 0 [,) +∞ ) )
15 13 14 sseldi ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
16 0xr 0 ∈ ℝ*
17 16 a1i ( ( 𝜑𝑘𝑍 ) → 0 ∈ ℝ* )
18 pnfxr +∞ ∈ ℝ*
19 18 a1i ( ( 𝜑𝑘𝑍 ) → +∞ ∈ ℝ* )
20 icogelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐹𝑘 ) ∈ ( 0 [,) +∞ ) ) → 0 ≤ ( 𝐹𝑘 ) )
21 17 19 14 20 syl3anc ( ( 𝜑𝑘𝑍 ) → 0 ≤ ( 𝐹𝑘 ) )
22 seqex seq 𝑀 ( + , 𝐹 ) ∈ V
23 4 22 eqeltri 𝐺 ∈ V
24 23 a1i ( 𝜑𝐺 ∈ V )
25 climcl ( 𝐺𝐵𝐵 ∈ ℂ )
26 5 25 syl ( 𝜑𝐵 ∈ ℂ )
27 breldmg ( ( 𝐺 ∈ V ∧ 𝐵 ∈ ℂ ∧ 𝐺𝐵 ) → 𝐺 ∈ dom ⇝ )
28 24 26 5 27 syl3anc ( 𝜑𝐺 ∈ dom ⇝ )
29 4 a1i ( ( 𝜑𝑗𝑍 ) → 𝐺 = seq 𝑀 ( + , 𝐹 ) )
30 29 fveq1d ( ( 𝜑𝑗𝑍 ) → ( 𝐺𝑗 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) )
31 2 eleq2i ( 𝑗𝑍𝑗 ∈ ( ℤ𝑀 ) )
32 31 biimpi ( 𝑗𝑍𝑗 ∈ ( ℤ𝑀 ) )
33 32 adantl ( ( 𝜑𝑗𝑍 ) → 𝑗 ∈ ( ℤ𝑀 ) )
34 simpll ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → 𝜑 )
35 elfzuz ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ𝑀 ) )
36 35 2 eleqtrrdi ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘𝑍 )
37 36 adantl ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → 𝑘𝑍 )
38 34 37 15 syl2anc ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹𝑘 ) ∈ ℝ )
39 readdcl ( ( 𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ ) → ( 𝑘 + 𝑖 ) ∈ ℝ )
40 39 adantl ( ( ( 𝜑𝑗𝑍 ) ∧ ( 𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ ) ) → ( 𝑘 + 𝑖 ) ∈ ℝ )
41 33 38 40 seqcl ( ( 𝜑𝑗𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℝ )
42 30 41 eqeltrd ( ( 𝜑𝑗𝑍 ) → ( 𝐺𝑗 ) ∈ ℝ )
43 42 recnd ( ( 𝜑𝑗𝑍 ) → ( 𝐺𝑗 ) ∈ ℂ )
44 43 ralrimiva ( 𝜑 → ∀ 𝑗𝑍 ( 𝐺𝑗 ) ∈ ℂ )
45 2 climbdd ( ( 𝑀 ∈ ℤ ∧ 𝐺 ∈ dom ⇝ ∧ ∀ 𝑗𝑍 ( 𝐺𝑗 ) ∈ ℂ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 ( abs ‘ ( 𝐺𝑗 ) ) ≤ 𝑥 )
46 1 28 44 45 syl3anc ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 ( abs ‘ ( 𝐺𝑗 ) ) ≤ 𝑥 )
47 42 ad4ant13 ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ ( abs ‘ ( 𝐺𝑗 ) ) ≤ 𝑥 ) → ( 𝐺𝑗 ) ∈ ℝ )
48 43 ad4ant13 ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ ( abs ‘ ( 𝐺𝑗 ) ) ≤ 𝑥 ) → ( 𝐺𝑗 ) ∈ ℂ )
49 48 abscld ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ ( abs ‘ ( 𝐺𝑗 ) ) ≤ 𝑥 ) → ( abs ‘ ( 𝐺𝑗 ) ) ∈ ℝ )
50 simpllr ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ ( abs ‘ ( 𝐺𝑗 ) ) ≤ 𝑥 ) → 𝑥 ∈ ℝ )
51 47 leabsd ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ ( abs ‘ ( 𝐺𝑗 ) ) ≤ 𝑥 ) → ( 𝐺𝑗 ) ≤ ( abs ‘ ( 𝐺𝑗 ) ) )
52 simpr ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ ( abs ‘ ( 𝐺𝑗 ) ) ≤ 𝑥 ) → ( abs ‘ ( 𝐺𝑗 ) ) ≤ 𝑥 )
53 47 49 50 51 52 letrd ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) ∧ ( abs ‘ ( 𝐺𝑗 ) ) ≤ 𝑥 ) → ( 𝐺𝑗 ) ≤ 𝑥 )
54 53 ex ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗𝑍 ) → ( ( abs ‘ ( 𝐺𝑗 ) ) ≤ 𝑥 → ( 𝐺𝑗 ) ≤ 𝑥 ) )
55 54 ralimdva ( ( 𝜑𝑥 ∈ ℝ ) → ( ∀ 𝑗𝑍 ( abs ‘ ( 𝐺𝑗 ) ) ≤ 𝑥 → ∀ 𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥 ) )
56 55 reximdva ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 ( abs ‘ ( 𝐺𝑗 ) ) ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥 ) )
57 46 56 mpd ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥 )
58 2 4 1 12 15 21 57 isumsup2 ( 𝜑𝐺 ⇝ sup ( ran 𝐺 , ℝ , < ) )
59 2 1 58 42 climrecl ( 𝜑 → sup ( ran 𝐺 , ℝ , < ) ∈ ℝ )
60 59 rexrd ( 𝜑 → sup ( ran 𝐺 , ℝ , < ) ∈ ℝ* )
61 3 feqmptd ( 𝜑𝐹 = ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) )
62 61 fveq2d ( 𝜑 → ( Σ^𝐹 ) = ( Σ^ ‘ ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ) )
63 mpteq1 ( 𝑦 = ∅ → ( 𝑘𝑦 ↦ ( 𝐹𝑘 ) ) = ( 𝑘 ∈ ∅ ↦ ( 𝐹𝑘 ) ) )
64 63 fveq2d ( 𝑦 = ∅ → ( Σ^ ‘ ( 𝑘𝑦 ↦ ( 𝐹𝑘 ) ) ) = ( Σ^ ‘ ( 𝑘 ∈ ∅ ↦ ( 𝐹𝑘 ) ) ) )
65 mpt0 ( 𝑘 ∈ ∅ ↦ ( 𝐹𝑘 ) ) = ∅
66 65 fveq2i ( Σ^ ‘ ( 𝑘 ∈ ∅ ↦ ( 𝐹𝑘 ) ) ) = ( Σ^ ‘ ∅ )
67 sge00 ( Σ^ ‘ ∅ ) = 0
68 66 67 eqtri ( Σ^ ‘ ( 𝑘 ∈ ∅ ↦ ( 𝐹𝑘 ) ) ) = 0
69 68 a1i ( 𝑦 = ∅ → ( Σ^ ‘ ( 𝑘 ∈ ∅ ↦ ( 𝐹𝑘 ) ) ) = 0 )
70 64 69 eqtrd ( 𝑦 = ∅ → ( Σ^ ‘ ( 𝑘𝑦 ↦ ( 𝐹𝑘 ) ) ) = 0 )
71 70 adantl ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘𝑦 ↦ ( 𝐹𝑘 ) ) ) = 0 )
72 0red ( 𝜑 → 0 ∈ ℝ )
73 39 adantl ( ( 𝜑 ∧ ( 𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ ) ) → ( 𝑘 + 𝑖 ) ∈ ℝ )
74 2 1 15 73 seqf ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ )
75 4 a1i ( 𝜑𝐺 = seq 𝑀 ( + , 𝐹 ) )
76 75 feq1d ( 𝜑 → ( 𝐺 : 𝑍 ⟶ ℝ ↔ seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) )
77 74 76 mpbird ( 𝜑𝐺 : 𝑍 ⟶ ℝ )
78 77 frnd ( 𝜑 → ran 𝐺 ⊆ ℝ )
79 77 ffund ( 𝜑 → Fun 𝐺 )
80 uzid ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ𝑀 ) )
81 1 80 syl ( 𝜑𝑀 ∈ ( ℤ𝑀 ) )
82 2 eqcomi ( ℤ𝑀 ) = 𝑍
83 81 82 eleqtrdi ( 𝜑𝑀𝑍 )
84 77 fdmd ( 𝜑 → dom 𝐺 = 𝑍 )
85 84 eqcomd ( 𝜑𝑍 = dom 𝐺 )
86 83 85 eleqtrd ( 𝜑𝑀 ∈ dom 𝐺 )
87 fvelrn ( ( Fun 𝐺𝑀 ∈ dom 𝐺 ) → ( 𝐺𝑀 ) ∈ ran 𝐺 )
88 79 86 87 syl2anc ( 𝜑 → ( 𝐺𝑀 ) ∈ ran 𝐺 )
89 78 88 sseldd ( 𝜑 → ( 𝐺𝑀 ) ∈ ℝ )
90 16 a1i ( 𝜑 → 0 ∈ ℝ* )
91 18 a1i ( 𝜑 → +∞ ∈ ℝ* )
92 3 83 ffvelrnd ( 𝜑 → ( 𝐹𝑀 ) ∈ ( 0 [,) +∞ ) )
93 icogelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐹𝑀 ) ∈ ( 0 [,) +∞ ) ) → 0 ≤ ( 𝐹𝑀 ) )
94 90 91 92 93 syl3anc ( 𝜑 → 0 ≤ ( 𝐹𝑀 ) )
95 4 fveq1i ( 𝐺𝑀 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 )
96 95 a1i ( 𝜑 → ( 𝐺𝑀 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) )
97 seq1 ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹𝑀 ) )
98 1 97 syl ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹𝑀 ) )
99 96 98 eqtr2d ( 𝜑 → ( 𝐹𝑀 ) = ( 𝐺𝑀 ) )
100 94 99 breqtrd ( 𝜑 → 0 ≤ ( 𝐺𝑀 ) )
101 88 ne0d ( 𝜑 → ran 𝐺 ≠ ∅ )
102 simpr ( ( 𝜑𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ran 𝐺 )
103 77 ffnd ( 𝜑𝐺 Fn 𝑍 )
104 fvelrnb ( 𝐺 Fn 𝑍 → ( 𝑧 ∈ ran 𝐺 ↔ ∃ 𝑗𝑍 ( 𝐺𝑗 ) = 𝑧 ) )
105 103 104 syl ( 𝜑 → ( 𝑧 ∈ ran 𝐺 ↔ ∃ 𝑗𝑍 ( 𝐺𝑗 ) = 𝑧 ) )
106 105 adantr ( ( 𝜑𝑧 ∈ ran 𝐺 ) → ( 𝑧 ∈ ran 𝐺 ↔ ∃ 𝑗𝑍 ( 𝐺𝑗 ) = 𝑧 ) )
107 102 106 mpbid ( ( 𝜑𝑧 ∈ ran 𝐺 ) → ∃ 𝑗𝑍 ( 𝐺𝑗 ) = 𝑧 )
108 107 adantlr ( ( ( 𝜑 ∧ ∀ 𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥 ) ∧ 𝑧 ∈ ran 𝐺 ) → ∃ 𝑗𝑍 ( 𝐺𝑗 ) = 𝑧 )
109 nfv 𝑗 𝜑
110 nfra1 𝑗𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥
111 109 110 nfan 𝑗 ( 𝜑 ∧ ∀ 𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥 )
112 nfv 𝑗 𝑧 ∈ ran 𝐺
113 111 112 nfan 𝑗 ( ( 𝜑 ∧ ∀ 𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥 ) ∧ 𝑧 ∈ ran 𝐺 )
114 nfv 𝑗 𝑧𝑥
115 rspa ( ( ∀ 𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥𝑗𝑍 ) → ( 𝐺𝑗 ) ≤ 𝑥 )
116 115 3adant3 ( ( ∀ 𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥𝑗𝑍 ∧ ( 𝐺𝑗 ) = 𝑧 ) → ( 𝐺𝑗 ) ≤ 𝑥 )
117 simp3 ( ( ∀ 𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥𝑗𝑍 ∧ ( 𝐺𝑗 ) = 𝑧 ) → ( 𝐺𝑗 ) = 𝑧 )
118 id ( ( 𝐺𝑗 ) = 𝑧 → ( 𝐺𝑗 ) = 𝑧 )
119 118 eqcomd ( ( 𝐺𝑗 ) = 𝑧𝑧 = ( 𝐺𝑗 ) )
120 119 adantl ( ( ( 𝐺𝑗 ) ≤ 𝑥 ∧ ( 𝐺𝑗 ) = 𝑧 ) → 𝑧 = ( 𝐺𝑗 ) )
121 simpl ( ( ( 𝐺𝑗 ) ≤ 𝑥 ∧ ( 𝐺𝑗 ) = 𝑧 ) → ( 𝐺𝑗 ) ≤ 𝑥 )
122 120 121 eqbrtrd ( ( ( 𝐺𝑗 ) ≤ 𝑥 ∧ ( 𝐺𝑗 ) = 𝑧 ) → 𝑧𝑥 )
123 116 117 122 syl2anc ( ( ∀ 𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥𝑗𝑍 ∧ ( 𝐺𝑗 ) = 𝑧 ) → 𝑧𝑥 )
124 123 3exp ( ∀ 𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥 → ( 𝑗𝑍 → ( ( 𝐺𝑗 ) = 𝑧𝑧𝑥 ) ) )
125 124 ad2antlr ( ( ( 𝜑 ∧ ∀ 𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥 ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑗𝑍 → ( ( 𝐺𝑗 ) = 𝑧𝑧𝑥 ) ) )
126 113 114 125 rexlimd ( ( ( 𝜑 ∧ ∀ 𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥 ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ∃ 𝑗𝑍 ( 𝐺𝑗 ) = 𝑧𝑧𝑥 ) )
127 108 126 mpd ( ( ( 𝜑 ∧ ∀ 𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥 ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧𝑥 )
128 127 ralrimiva ( ( 𝜑 ∧ ∀ 𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥 ) → ∀ 𝑧 ∈ ran 𝐺 𝑧𝑥 )
129 128 ex ( 𝜑 → ( ∀ 𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥 → ∀ 𝑧 ∈ ran 𝐺 𝑧𝑥 ) )
130 129 reximdv ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 ( 𝐺𝑗 ) ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐺 𝑧𝑥 ) )
131 57 130 mpd ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐺 𝑧𝑥 )
132 suprub ( ( ( ran 𝐺 ⊆ ℝ ∧ ran 𝐺 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐺 𝑧𝑥 ) ∧ ( 𝐺𝑀 ) ∈ ran 𝐺 ) → ( 𝐺𝑀 ) ≤ sup ( ran 𝐺 , ℝ , < ) )
133 78 101 131 88 132 syl31anc ( 𝜑 → ( 𝐺𝑀 ) ≤ sup ( ran 𝐺 , ℝ , < ) )
134 72 89 59 100 133 letrd ( 𝜑 → 0 ≤ sup ( ran 𝐺 , ℝ , < ) )
135 134 ad2antrr ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑦 = ∅ ) → 0 ≤ sup ( ran 𝐺 , ℝ , < ) )
136 71 135 eqbrtrd ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘𝑦 ↦ ( 𝐹𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) )
137 simpr ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) )
138 simpll ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘𝑦 ) → 𝜑 )
139 elpwinss ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑦𝑍 )
140 139 sselda ( ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ 𝑘𝑦 ) → 𝑘𝑍 )
141 140 adantll ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘𝑦 ) → 𝑘𝑍 )
142 8 14 sseldi ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ( 0 [,] +∞ ) )
143 138 141 142 syl2anc ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘𝑦 ) → ( 𝐹𝑘 ) ∈ ( 0 [,] +∞ ) )
144 eqid ( 𝑘𝑦 ↦ ( 𝐹𝑘 ) ) = ( 𝑘𝑦 ↦ ( 𝐹𝑘 ) )
145 143 144 fmptd ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( 𝑘𝑦 ↦ ( 𝐹𝑘 ) ) : 𝑦 ⟶ ( 0 [,] +∞ ) )
146 137 145 sge0xrcl ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑘𝑦 ↦ ( 𝐹𝑘 ) ) ) ∈ ℝ* )
147 146 adantr ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘𝑦 ↦ ( 𝐹𝑘 ) ) ) ∈ ℝ* )
148 fzfid ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ∈ Fin )
149 elfzuz ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) → 𝑘 ∈ ( ℤ𝑀 ) )
150 149 82 eleqtrdi ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) → 𝑘𝑍 )
151 150 142 sylan2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) → ( 𝐹𝑘 ) ∈ ( 0 [,] +∞ ) )
152 eqid ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹𝑘 ) ) = ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹𝑘 ) )
153 151 152 fmptd ( 𝜑 → ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹𝑘 ) ) : ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ⟶ ( 0 [,] +∞ ) )
154 153 adantr ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹𝑘 ) ) : ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ⟶ ( 0 [,] +∞ ) )
155 148 154 sge0xrcl ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹𝑘 ) ) ) ∈ ℝ* )
156 155 adantr ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹𝑘 ) ) ) ∈ ℝ* )
157 60 adantr ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → sup ( ran 𝐺 , ℝ , < ) ∈ ℝ* )
158 157 adantr ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → sup ( ran 𝐺 , ℝ , < ) ∈ ℝ* )
159 simpll ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) → 𝜑 )
160 150 adantl ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) → 𝑘𝑍 )
161 159 160 142 syl2anc ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) → ( 𝐹𝑘 ) ∈ ( 0 [,] +∞ ) )
162 elinel2 ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑦 ∈ Fin )
163 2 139 162 ssuzfz ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑦 ⊆ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) )
164 163 adantl ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → 𝑦 ⊆ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) )
165 148 161 164 sge0lessmpt ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑘𝑦 ↦ ( 𝐹𝑘 ) ) ) ≤ ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹𝑘 ) ) ) )
166 165 adantr ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘𝑦 ↦ ( 𝐹𝑘 ) ) ) ≤ ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹𝑘 ) ) ) )
167 78 adantr ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ran 𝐺 ⊆ ℝ )
168 167 adantr ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ran 𝐺 ⊆ ℝ )
169 101 adantr ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ran 𝐺 ≠ ∅ )
170 169 adantr ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ran 𝐺 ≠ ∅ )
171 131 adantr ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐺 𝑧𝑥 )
172 171 adantr ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐺 𝑧𝑥 )
173 159 160 14 syl2anc ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) → ( 𝐹𝑘 ) ∈ ( 0 [,) +∞ ) )
174 148 173 sge0fsummpt ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹𝑘 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ( 𝐹𝑘 ) )
175 174 adantr ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹𝑘 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ( 𝐹𝑘 ) )
176 eqidd ( ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) ∧ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) → ( 𝐹𝑘 ) = ( 𝐹𝑘 ) )
177 139 2 sseqtrdi ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑦 ⊆ ( ℤ𝑀 ) )
178 177 adantr ( ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 ⊆ ( ℤ𝑀 ) )
179 uzssz ( ℤ𝑀 ) ⊆ ℤ
180 2 179 eqsstri 𝑍 ⊆ ℤ
181 139 180 sstrdi ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) → 𝑦 ⊆ ℤ )
182 181 adantr ( ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 ⊆ ℤ )
183 neqne ( ¬ 𝑦 = ∅ → 𝑦 ≠ ∅ )
184 183 adantl ( ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 ≠ ∅ )
185 162 adantr ( ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 ∈ Fin )
186 suprfinzcl ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin ) → sup ( 𝑦 , ℝ , < ) ∈ 𝑦 )
187 182 184 185 186 syl3anc ( ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ ¬ 𝑦 = ∅ ) → sup ( 𝑦 , ℝ , < ) ∈ 𝑦 )
188 178 187 sseldd ( ( 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ∧ ¬ 𝑦 = ∅ ) → sup ( 𝑦 , ℝ , < ) ∈ ( ℤ𝑀 ) )
189 188 adantll ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → sup ( 𝑦 , ℝ , < ) ∈ ( ℤ𝑀 ) )
190 15 recnd ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
191 159 160 190 syl2anc ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) → ( 𝐹𝑘 ) ∈ ℂ )
192 191 adantlr ( ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) ∧ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ) → ( 𝐹𝑘 ) ∈ ℂ )
193 176 189 192 fsumser ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → Σ 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ( 𝐹𝑘 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ sup ( 𝑦 , ℝ , < ) ) )
194 4 eqcomi seq 𝑀 ( + , 𝐹 ) = 𝐺
195 194 fveq1i ( seq 𝑀 ( + , 𝐹 ) ‘ sup ( 𝑦 , ℝ , < ) ) = ( 𝐺 ‘ sup ( 𝑦 , ℝ , < ) )
196 195 a1i ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( seq 𝑀 ( + , 𝐹 ) ‘ sup ( 𝑦 , ℝ , < ) ) = ( 𝐺 ‘ sup ( 𝑦 , ℝ , < ) ) )
197 175 193 196 3eqtrd ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹𝑘 ) ) ) = ( 𝐺 ‘ sup ( 𝑦 , ℝ , < ) ) )
198 79 adantr ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → Fun 𝐺 )
199 198 adantr ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → Fun 𝐺 )
200 189 82 eleqtrdi ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → sup ( 𝑦 , ℝ , < ) ∈ 𝑍 )
201 85 ad2antrr ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑍 = dom 𝐺 )
202 200 201 eleqtrd ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → sup ( 𝑦 , ℝ , < ) ∈ dom 𝐺 )
203 fvelrn ( ( Fun 𝐺 ∧ sup ( 𝑦 , ℝ , < ) ∈ dom 𝐺 ) → ( 𝐺 ‘ sup ( 𝑦 , ℝ , < ) ) ∈ ran 𝐺 )
204 199 202 203 syl2anc ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( 𝐺 ‘ sup ( 𝑦 , ℝ , < ) ) ∈ ran 𝐺 )
205 197 204 eqeltrd ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹𝑘 ) ) ) ∈ ran 𝐺 )
206 suprub ( ( ( ran 𝐺 ⊆ ℝ ∧ ran 𝐺 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐺 𝑧𝑥 ) ∧ ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹𝑘 ) ) ) ∈ ran 𝐺 ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) )
207 168 170 172 205 206 syl31anc ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... sup ( 𝑦 , ℝ , < ) ) ↦ ( 𝐹𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) )
208 147 156 158 166 207 xrletrd ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) ∧ ¬ 𝑦 = ∅ ) → ( Σ^ ‘ ( 𝑘𝑦 ↦ ( 𝐹𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) )
209 136 208 pm2.61dan ( ( 𝜑𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑘𝑦 ↦ ( 𝐹𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) )
210 209 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ( Σ^ ‘ ( 𝑘𝑦 ↦ ( 𝐹𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) )
211 nfv 𝑘 𝜑
212 211 7 142 60 sge0lefimpt ( 𝜑 → ( ( Σ^ ‘ ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) ↔ ∀ 𝑦 ∈ ( 𝒫 𝑍 ∩ Fin ) ( Σ^ ‘ ( 𝑘𝑦 ↦ ( 𝐹𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) ) )
213 210 212 mpbird ( 𝜑 → ( Σ^ ‘ ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ) ≤ sup ( ran 𝐺 , ℝ , < ) )
214 62 213 eqbrtrd ( 𝜑 → ( Σ^𝐹 ) ≤ sup ( ran 𝐺 , ℝ , < ) )
215 36 ssriv ( 𝑀 ... 𝑗 ) ⊆ 𝑍
216 215 a1i ( 𝜑 → ( 𝑀 ... 𝑗 ) ⊆ 𝑍 )
217 7 142 216 sge0lessmpt ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝐹𝑘 ) ) ) ≤ ( Σ^ ‘ ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ) )
218 217 3ad2ant1 ( ( 𝜑𝑗𝑍 ∧ ( 𝐺𝑗 ) = 𝑧 ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝐹𝑘 ) ) ) ≤ ( Σ^ ‘ ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ) )
219 fzfid ( 𝜑 → ( 𝑀 ... 𝑗 ) ∈ Fin )
220 36 14 sylan2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹𝑘 ) ∈ ( 0 [,) +∞ ) )
221 219 220 sge0fsummpt ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝐹𝑘 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐹𝑘 ) )
222 221 3ad2ant1 ( ( 𝜑𝑗𝑍 ∧ ( 𝐺𝑗 ) = 𝑧 ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝐹𝑘 ) ) ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐹𝑘 ) )
223 34 37 12 syl2anc ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹𝑘 ) = ( 𝐹𝑘 ) )
224 34 37 190 syl2anc ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹𝑘 ) ∈ ℂ )
225 223 33 224 fsumser ( ( 𝜑𝑗𝑍 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐹𝑘 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) )
226 225 3adant3 ( ( 𝜑𝑗𝑍 ∧ ( 𝐺𝑗 ) = 𝑧 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐹𝑘 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) )
227 222 226 eqtrd ( ( 𝜑𝑗𝑍 ∧ ( 𝐺𝑗 ) = 𝑧 ) → ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝐹𝑘 ) ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) )
228 194 fveq1i ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( 𝐺𝑗 )
229 228 a1i ( ( 𝜑𝑗𝑍 ∧ ( 𝐺𝑗 ) = 𝑧 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( 𝐺𝑗 ) )
230 simp3 ( ( 𝜑𝑗𝑍 ∧ ( 𝐺𝑗 ) = 𝑧 ) → ( 𝐺𝑗 ) = 𝑧 )
231 227 229 230 3eqtrrd ( ( 𝜑𝑗𝑍 ∧ ( 𝐺𝑗 ) = 𝑧 ) → 𝑧 = ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝐹𝑘 ) ) ) )
232 62 3ad2ant1 ( ( 𝜑𝑗𝑍 ∧ ( 𝐺𝑗 ) = 𝑧 ) → ( Σ^𝐹 ) = ( Σ^ ‘ ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ) )
233 231 232 breq12d ( ( 𝜑𝑗𝑍 ∧ ( 𝐺𝑗 ) = 𝑧 ) → ( 𝑧 ≤ ( Σ^𝐹 ) ↔ ( Σ^ ‘ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝐹𝑘 ) ) ) ≤ ( Σ^ ‘ ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ) ) )
234 218 233 mpbird ( ( 𝜑𝑗𝑍 ∧ ( 𝐺𝑗 ) = 𝑧 ) → 𝑧 ≤ ( Σ^𝐹 ) )
235 234 3exp ( 𝜑 → ( 𝑗𝑍 → ( ( 𝐺𝑗 ) = 𝑧𝑧 ≤ ( Σ^𝐹 ) ) ) )
236 235 adantr ( ( 𝜑𝑧 ∈ ran 𝐺 ) → ( 𝑗𝑍 → ( ( 𝐺𝑗 ) = 𝑧𝑧 ≤ ( Σ^𝐹 ) ) ) )
237 236 rexlimdv ( ( 𝜑𝑧 ∈ ran 𝐺 ) → ( ∃ 𝑗𝑍 ( 𝐺𝑗 ) = 𝑧𝑧 ≤ ( Σ^𝐹 ) ) )
238 107 237 mpd ( ( 𝜑𝑧 ∈ ran 𝐺 ) → 𝑧 ≤ ( Σ^𝐹 ) )
239 238 ralrimiva ( 𝜑 → ∀ 𝑧 ∈ ran 𝐺 𝑧 ≤ ( Σ^𝐹 ) )
240 7 10 sge0cl ( 𝜑 → ( Σ^𝐹 ) ∈ ( 0 [,] +∞ ) )
241 59 ltpnfd ( 𝜑 → sup ( ran 𝐺 , ℝ , < ) < +∞ )
242 11 60 91 214 241 xrlelttrd ( 𝜑 → ( Σ^𝐹 ) < +∞ )
243 11 91 242 xrgtned ( 𝜑 → +∞ ≠ ( Σ^𝐹 ) )
244 243 necomd ( 𝜑 → ( Σ^𝐹 ) ≠ +∞ )
245 ge0xrre ( ( ( Σ^𝐹 ) ∈ ( 0 [,] +∞ ) ∧ ( Σ^𝐹 ) ≠ +∞ ) → ( Σ^𝐹 ) ∈ ℝ )
246 240 244 245 syl2anc ( 𝜑 → ( Σ^𝐹 ) ∈ ℝ )
247 suprleub ( ( ( ran 𝐺 ⊆ ℝ ∧ ran 𝐺 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝐺 𝑧𝑥 ) ∧ ( Σ^𝐹 ) ∈ ℝ ) → ( sup ( ran 𝐺 , ℝ , < ) ≤ ( Σ^𝐹 ) ↔ ∀ 𝑧 ∈ ran 𝐺 𝑧 ≤ ( Σ^𝐹 ) ) )
248 78 101 131 246 247 syl31anc ( 𝜑 → ( sup ( ran 𝐺 , ℝ , < ) ≤ ( Σ^𝐹 ) ↔ ∀ 𝑧 ∈ ran 𝐺 𝑧 ≤ ( Σ^𝐹 ) ) )
249 239 248 mpbird ( 𝜑 → sup ( ran 𝐺 , ℝ , < ) ≤ ( Σ^𝐹 ) )
250 11 60 214 249 xrletrid ( 𝜑 → ( Σ^𝐹 ) = sup ( ran 𝐺 , ℝ , < ) )
251 climuni ( ( 𝐺𝐵𝐺 ⇝ sup ( ran 𝐺 , ℝ , < ) ) → 𝐵 = sup ( ran 𝐺 , ℝ , < ) )
252 5 58 251 syl2anc ( 𝜑𝐵 = sup ( ran 𝐺 , ℝ , < ) )
253 250 252 eqtr4d ( 𝜑 → ( Σ^𝐹 ) = 𝐵 )