| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0lefimpt.xph | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | sge0lefimpt.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | sge0lefimpt.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ( 0 [,] +∞ ) ) | 
						
							| 4 |  | sge0lefimpt.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ* ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 6 | 1 3 5 | fmptdf | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 7 | 2 6 4 | sge0lefi | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ≤  𝐶  ↔  ∀ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 ) )  ≤  𝐶 ) ) | 
						
							| 8 |  | elpwinss | ⊢ ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  →  𝑦  ⊆  𝐴 ) | 
						
							| 9 | 8 | resmptd | ⊢ ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 )  =  ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  →  ( Σ^ ‘ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 ) )  =  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) | 
						
							| 11 | 10 | breq1d | ⊢ ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  →  ( ( Σ^ ‘ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 ) )  ≤  𝐶  ↔  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) )  ≤  𝐶 ) ) | 
						
							| 12 | 11 | ralbiia | ⊢ ( ∀ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 ) )  ≤  𝐶  ↔  ∀ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) )  ≤  𝐶 ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 ) )  ≤  𝐶  ↔  ∀ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) )  ≤  𝐶 ) ) | 
						
							| 14 | 7 13 | bitrd | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ≤  𝐶  ↔  ∀ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) )  ≤  𝐶 ) ) |