Metamath Proof Explorer


Theorem sge0lefimpt

Description: A sum of nonnegative extended reals is smaller than a given extended real if and only if every finite subsum is smaller than it. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0lefimpt.xph 𝑥 𝜑
sge0lefimpt.a ( 𝜑𝐴𝑉 )
sge0lefimpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
sge0lefimpt.c ( 𝜑𝐶 ∈ ℝ* )
Assertion sge0lefimpt ( 𝜑 → ( ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) ≤ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥𝑦𝐵 ) ) ≤ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 sge0lefimpt.xph 𝑥 𝜑
2 sge0lefimpt.a ( 𝜑𝐴𝑉 )
3 sge0lefimpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
4 sge0lefimpt.c ( 𝜑𝐶 ∈ ℝ* )
5 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
6 1 3 5 fmptdf ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
7 2 6 4 sge0lefi ( 𝜑 → ( ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) ≤ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) ) ≤ 𝐶 ) )
8 elpwinss ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦𝐴 )
9 8 resmptd ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) = ( 𝑥𝑦𝐵 ) )
10 9 fveq2d ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) ) = ( Σ^ ‘ ( 𝑥𝑦𝐵 ) ) )
11 10 breq1d ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) ) ≤ 𝐶 ↔ ( Σ^ ‘ ( 𝑥𝑦𝐵 ) ) ≤ 𝐶 ) )
12 11 ralbiia ( ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) ) ≤ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥𝑦𝐵 ) ) ≤ 𝐶 )
13 12 a1i ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑦 ) ) ≤ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥𝑦𝐵 ) ) ≤ 𝐶 ) )
14 7 13 bitrd ( 𝜑 → ( ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) ≤ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥𝑦𝐵 ) ) ≤ 𝐶 ) )