Step |
Hyp |
Ref |
Expression |
1 |
|
sge0lefimpt.xph |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
sge0lefimpt.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
sge0lefimpt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
4 |
|
sge0lefimpt.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
6 |
1 3 5
|
fmptdf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
7 |
2 6 4
|
sge0lefi |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ≤ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) ≤ 𝐶 ) ) |
8 |
|
elpwinss |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ⊆ 𝐴 ) |
9 |
8
|
resmptd |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) = ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) |
11 |
10
|
breq1d |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) ≤ 𝐶 ↔ ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ≤ 𝐶 ) ) |
12 |
11
|
ralbiia |
⊢ ( ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) ≤ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ≤ 𝐶 ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) ≤ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ≤ 𝐶 ) ) |
14 |
7 13
|
bitrd |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ≤ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ≤ 𝐶 ) ) |