Metamath Proof Explorer


Theorem sge0lefimpt

Description: A sum of nonnegative extended reals is smaller than a given extended real if and only if every finite subsum is smaller than it. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0lefimpt.xph x φ
sge0lefimpt.a φ A V
sge0lefimpt.b φ x A B 0 +∞
sge0lefimpt.c φ C *
Assertion sge0lefimpt φ sum^ x A B C y 𝒫 A Fin sum^ x y B C

Proof

Step Hyp Ref Expression
1 sge0lefimpt.xph x φ
2 sge0lefimpt.a φ A V
3 sge0lefimpt.b φ x A B 0 +∞
4 sge0lefimpt.c φ C *
5 eqid x A B = x A B
6 1 3 5 fmptdf φ x A B : A 0 +∞
7 2 6 4 sge0lefi φ sum^ x A B C y 𝒫 A Fin sum^ x A B y C
8 elpwinss y 𝒫 A Fin y A
9 8 resmptd y 𝒫 A Fin x A B y = x y B
10 9 fveq2d y 𝒫 A Fin sum^ x A B y = sum^ x y B
11 10 breq1d y 𝒫 A Fin sum^ x A B y C sum^ x y B C
12 11 ralbiia y 𝒫 A Fin sum^ x A B y C y 𝒫 A Fin sum^ x y B C
13 12 a1i φ y 𝒫 A Fin sum^ x A B y C y 𝒫 A Fin sum^ x y B C
14 7 13 bitrd φ sum^ x A B C y 𝒫 A Fin sum^ x y B C