Metamath Proof Explorer


Theorem sge0xrclmpt

Description: The generalized sum of nonnegative extended reals is an extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0xrclmpt.xph 𝑥 𝜑
sge0xrclmpt.a ( 𝜑𝐴𝑉 )
sge0xrclmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
Assertion sge0xrclmpt ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 sge0xrclmpt.xph 𝑥 𝜑
2 sge0xrclmpt.a ( 𝜑𝐴𝑉 )
3 sge0xrclmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
4 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
5 1 2 3 sge0clmpt ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) ∈ ( 0 [,] +∞ ) )
6 4 5 sselid ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) ∈ ℝ* )