Metamath Proof Explorer


Theorem sge0clmpt

Description: The generalized sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0clmpt.xph 𝑥 𝜑
sge0clmpt.a ( 𝜑𝐴𝑉 )
sge0clmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
Assertion sge0clmpt ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) ∈ ( 0 [,] +∞ ) )

Proof

Step Hyp Ref Expression
1 sge0clmpt.xph 𝑥 𝜑
2 sge0clmpt.a ( 𝜑𝐴𝑉 )
3 sge0clmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
4 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
5 1 3 4 fmptdf ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
6 2 5 sge0cl ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) ∈ ( 0 [,] +∞ ) )