| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0ltfirpmpt2.xph | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | sge0ltfirpmpt2.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | sge0ltfirpmpt2.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ( 0 [,] +∞ ) ) | 
						
							| 4 |  | sge0ltfirpmpt2.rp | ⊢ ( 𝜑  →  𝑌  ∈  ℝ+ ) | 
						
							| 5 |  | sge0ltfirpmpt2.re | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  ℝ ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 7 | 1 3 6 | fmptdf | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 8 | 2 7 4 5 | sge0ltfirp | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( ( Σ^ ‘ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 ) )  +  𝑌 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( ( Σ^ ‘ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 ) )  +  𝑌 ) )  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( ( Σ^ ‘ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 ) )  +  𝑌 ) ) | 
						
							| 10 |  | elpwinss | ⊢ ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  →  𝑦  ⊆  𝐴 ) | 
						
							| 11 | 10 | resmptd | ⊢ ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 )  =  ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  →  ( Σ^ ‘ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 ) )  =  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ( Σ^ ‘ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 ) )  =  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) ) ) | 
						
							| 14 |  | elinel2 | ⊢ ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  →  𝑦  ∈  Fin ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  𝑦  ∈  Fin ) | 
						
							| 16 |  | nfv | ⊢ Ⅎ 𝑥 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) | 
						
							| 17 | 1 16 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 18 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  𝑥  ∈  𝑦 )  →  𝜑 ) | 
						
							| 19 | 10 | sselda | ⊢ ( ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  ∧  𝑥  ∈  𝑦 )  →  𝑥  ∈  𝐴 ) | 
						
							| 20 | 19 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  𝑥  ∈  𝑦 )  →  𝑥  ∈  𝐴 ) | 
						
							| 21 | 1 2 3 5 | sge0rernmpt | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ( 0 [,) +∞ ) ) | 
						
							| 22 | 18 20 21 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  𝑥  ∈  𝑦 )  →  𝐵  ∈  ( 0 [,) +∞ ) ) | 
						
							| 23 |  | eqid | ⊢ ( 𝑥  ∈  𝑦  ↦  𝐵 )  =  ( 𝑥  ∈  𝑦  ↦  𝐵 ) | 
						
							| 24 | 17 22 23 | fmptdf | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ( 𝑥  ∈  𝑦  ↦  𝐵 ) : 𝑦 ⟶ ( 0 [,) +∞ ) ) | 
						
							| 25 | 15 24 | sge0fsum | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ( Σ^ ‘ ( 𝑥  ∈  𝑦  ↦  𝐵 ) )  =  Σ 𝑘  ∈  𝑦 ( ( 𝑥  ∈  𝑦  ↦  𝐵 ) ‘ 𝑘 ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  𝑘  ∈  𝑦 )  →  𝑘  ∈  𝑦 ) | 
						
							| 27 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  𝑘  ∈  𝑦 )  →  𝜑 ) | 
						
							| 28 | 10 | sselda | ⊢ ( ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  ∧  𝑘  ∈  𝑦 )  →  𝑘  ∈  𝐴 ) | 
						
							| 29 | 28 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  𝑘  ∈  𝑦 )  →  𝑘  ∈  𝐴 ) | 
						
							| 30 |  | nfv | ⊢ Ⅎ 𝑥 𝑘  ∈  𝐴 | 
						
							| 31 | 1 30 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑘  ∈  𝐴 ) | 
						
							| 32 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑘  /  𝑥 ⦌ 𝐵 | 
						
							| 33 | 32 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑘  /  𝑥 ⦌ 𝐵  ∈  ( 0 [,) +∞ ) | 
						
							| 34 | 31 33 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ⦋ 𝑘  /  𝑥 ⦌ 𝐵  ∈  ( 0 [,) +∞ ) ) | 
						
							| 35 |  | eleq1w | ⊢ ( 𝑥  =  𝑘  →  ( 𝑥  ∈  𝐴  ↔  𝑘  ∈  𝐴 ) ) | 
						
							| 36 | 35 | anbi2d | ⊢ ( 𝑥  =  𝑘  →  ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝑘  ∈  𝐴 ) ) ) | 
						
							| 37 |  | csbeq1a | ⊢ ( 𝑥  =  𝑘  →  𝐵  =  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) | 
						
							| 38 | 37 | eleq1d | ⊢ ( 𝑥  =  𝑘  →  ( 𝐵  ∈  ( 0 [,) +∞ )  ↔  ⦋ 𝑘  /  𝑥 ⦌ 𝐵  ∈  ( 0 [,) +∞ ) ) ) | 
						
							| 39 | 36 38 | imbi12d | ⊢ ( 𝑥  =  𝑘  →  ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ( 0 [,) +∞ ) )  ↔  ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ⦋ 𝑘  /  𝑥 ⦌ 𝐵  ∈  ( 0 [,) +∞ ) ) ) ) | 
						
							| 40 | 34 39 21 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ⦋ 𝑘  /  𝑥 ⦌ 𝐵  ∈  ( 0 [,) +∞ ) ) | 
						
							| 41 | 27 29 40 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  𝑘  ∈  𝑦 )  →  ⦋ 𝑘  /  𝑥 ⦌ 𝐵  ∈  ( 0 [,) +∞ ) ) | 
						
							| 42 |  | nfcv | ⊢ Ⅎ 𝑘 𝐵 | 
						
							| 43 | 42 32 37 | cbvmpt | ⊢ ( 𝑥  ∈  𝑦  ↦  𝐵 )  =  ( 𝑘  ∈  𝑦  ↦  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) | 
						
							| 44 | 43 | fvmpt2 | ⊢ ( ( 𝑘  ∈  𝑦  ∧  ⦋ 𝑘  /  𝑥 ⦌ 𝐵  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝑥  ∈  𝑦  ↦  𝐵 ) ‘ 𝑘 )  =  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) | 
						
							| 45 | 26 41 44 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  𝑘  ∈  𝑦 )  →  ( ( 𝑥  ∈  𝑦  ↦  𝐵 ) ‘ 𝑘 )  =  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) | 
						
							| 46 | 45 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  Σ 𝑘  ∈  𝑦 ( ( 𝑥  ∈  𝑦  ↦  𝐵 ) ‘ 𝑘 )  =  Σ 𝑘  ∈  𝑦 ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) | 
						
							| 47 |  | eqcom | ⊢ ( 𝑥  =  𝑘  ↔  𝑘  =  𝑥 ) | 
						
							| 48 | 47 | imbi1i | ⊢ ( ( 𝑥  =  𝑘  →  𝐵  =  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 )  ↔  ( 𝑘  =  𝑥  →  𝐵  =  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 49 |  | eqcom | ⊢ ( 𝐵  =  ⦋ 𝑘  /  𝑥 ⦌ 𝐵  ↔  ⦋ 𝑘  /  𝑥 ⦌ 𝐵  =  𝐵 ) | 
						
							| 50 | 49 | imbi2i | ⊢ ( ( 𝑘  =  𝑥  →  𝐵  =  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 )  ↔  ( 𝑘  =  𝑥  →  ⦋ 𝑘  /  𝑥 ⦌ 𝐵  =  𝐵 ) ) | 
						
							| 51 | 48 50 | bitri | ⊢ ( ( 𝑥  =  𝑘  →  𝐵  =  ⦋ 𝑘  /  𝑥 ⦌ 𝐵 )  ↔  ( 𝑘  =  𝑥  →  ⦋ 𝑘  /  𝑥 ⦌ 𝐵  =  𝐵 ) ) | 
						
							| 52 | 37 51 | mpbi | ⊢ ( 𝑘  =  𝑥  →  ⦋ 𝑘  /  𝑥 ⦌ 𝐵  =  𝐵 ) | 
						
							| 53 | 52 32 42 | cbvsum | ⊢ Σ 𝑘  ∈  𝑦 ⦋ 𝑘  /  𝑥 ⦌ 𝐵  =  Σ 𝑥  ∈  𝑦 𝐵 | 
						
							| 54 | 53 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  Σ 𝑘  ∈  𝑦 ⦋ 𝑘  /  𝑥 ⦌ 𝐵  =  Σ 𝑥  ∈  𝑦 𝐵 ) | 
						
							| 55 | 46 54 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  Σ 𝑘  ∈  𝑦 ( ( 𝑥  ∈  𝑦  ↦  𝐵 ) ‘ 𝑘 )  =  Σ 𝑥  ∈  𝑦 𝐵 ) | 
						
							| 56 | 13 25 55 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ( Σ^ ‘ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 ) )  =  Σ 𝑥  ∈  𝑦 𝐵 ) | 
						
							| 57 | 56 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ( ( Σ^ ‘ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 ) )  +  𝑌 )  =  ( Σ 𝑥  ∈  𝑦 𝐵  +  𝑌 ) ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( ( Σ^ ‘ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 ) )  +  𝑌 ) )  →  ( ( Σ^ ‘ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 ) )  +  𝑌 )  =  ( Σ 𝑥  ∈  𝑦 𝐵  +  𝑌 ) ) | 
						
							| 59 | 9 58 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( ( Σ^ ‘ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 ) )  +  𝑌 ) )  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ 𝑥  ∈  𝑦 𝐵  +  𝑌 ) ) | 
						
							| 60 | 59 | ex | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ( ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( ( Σ^ ‘ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 ) )  +  𝑌 )  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ 𝑥  ∈  𝑦 𝐵  +  𝑌 ) ) ) | 
						
							| 61 | 60 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( ( Σ^ ‘ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↾  𝑦 ) )  +  𝑌 )  →  ∃ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ 𝑥  ∈  𝑦 𝐵  +  𝑌 ) ) ) | 
						
							| 62 | 8 61 | mpd | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  <  ( Σ 𝑥  ∈  𝑦 𝐵  +  𝑌 ) ) |