Step |
Hyp |
Ref |
Expression |
1 |
|
sge0ltfirpmpt2.xph |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
sge0ltfirpmpt2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
sge0ltfirpmpt2.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
4 |
|
sge0ltfirpmpt2.rp |
⊢ ( 𝜑 → 𝑌 ∈ ℝ+ ) |
5 |
|
sge0ltfirpmpt2.re |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ℝ ) |
6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
7 |
1 3 6
|
fmptdf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
8 |
2 7 4 5
|
sge0ltfirp |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) ) |
9 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) ) |
10 |
|
elpwinss |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ⊆ 𝐴 ) |
11 |
10
|
resmptd |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) = ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) ) |
14 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ∈ Fin ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ∈ Fin ) |
16 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) |
17 |
1 16
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
18 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → 𝜑 ) |
19 |
10
|
sselda |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ 𝐴 ) |
20 |
19
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ 𝐴 ) |
21 |
1 2 3 5
|
sge0rernmpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
22 |
18 20 21
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑥 ∈ 𝑦 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
23 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) |
24 |
17 22 23
|
fmptdf |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) : 𝑦 ⟶ ( 0 [,) +∞ ) ) |
25 |
15 24
|
sge0fsum |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝑦 ( ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ‘ 𝑘 ) ) |
26 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝑦 ) |
27 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝜑 ) |
28 |
10
|
sselda |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝐴 ) |
29 |
28
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝐴 ) |
30 |
|
nfv |
⊢ Ⅎ 𝑥 𝑘 ∈ 𝐴 |
31 |
1 30
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) |
32 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 |
33 |
32
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) |
34 |
31 33
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) |
35 |
|
eleq1w |
⊢ ( 𝑥 = 𝑘 → ( 𝑥 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴 ) ) |
36 |
35
|
anbi2d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ) ) |
37 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑘 → 𝐵 = ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
38 |
37
|
eleq1d |
⊢ ( 𝑥 = 𝑘 → ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) ) |
39 |
36 38
|
imbi12d |
⊢ ( 𝑥 = 𝑘 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) ) ) |
40 |
34 39 21
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) |
41 |
27 29 40
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) |
42 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐵 |
43 |
42 32 37
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) = ( 𝑘 ∈ 𝑦 ↦ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
44 |
43
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ 𝑦 ∧ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ‘ 𝑘 ) = ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
45 |
26 41 44
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → ( ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ‘ 𝑘 ) = ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
46 |
45
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑦 ( ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑦 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
47 |
|
eqcom |
⊢ ( 𝑥 = 𝑘 ↔ 𝑘 = 𝑥 ) |
48 |
47
|
imbi1i |
⊢ ( ( 𝑥 = 𝑘 → 𝐵 = ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑘 = 𝑥 → 𝐵 = ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
49 |
|
eqcom |
⊢ ( 𝐵 = ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ↔ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
50 |
49
|
imbi2i |
⊢ ( ( 𝑘 = 𝑥 → 𝐵 = ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑘 = 𝑥 → ⦋ 𝑘 / 𝑥 ⦌ 𝐵 = 𝐵 ) ) |
51 |
48 50
|
bitri |
⊢ ( ( 𝑥 = 𝑘 → 𝐵 = ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑘 = 𝑥 → ⦋ 𝑘 / 𝑥 ⦌ 𝐵 = 𝐵 ) ) |
52 |
37 51
|
mpbi |
⊢ ( 𝑘 = 𝑥 → ⦋ 𝑘 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
53 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
54 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑦 |
55 |
52 53 54 32 42
|
cbvsum |
⊢ Σ 𝑘 ∈ 𝑦 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 = Σ 𝑥 ∈ 𝑦 𝐵 |
56 |
55
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑦 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 = Σ 𝑥 ∈ 𝑦 𝐵 ) |
57 |
46 56
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑦 ( ( 𝑥 ∈ 𝑦 ↦ 𝐵 ) ‘ 𝑘 ) = Σ 𝑥 ∈ 𝑦 𝐵 ) |
58 |
13 25 57
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) = Σ 𝑥 ∈ 𝑦 𝐵 ) |
59 |
58
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) = ( Σ 𝑥 ∈ 𝑦 𝐵 + 𝑌 ) ) |
60 |
59
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) ) → ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) = ( Σ 𝑥 ∈ 𝑦 𝐵 + 𝑌 ) ) |
61 |
9 60
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑥 ∈ 𝑦 𝐵 + 𝑌 ) ) |
62 |
61
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑥 ∈ 𝑦 𝐵 + 𝑌 ) ) ) |
63 |
62
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( ( Σ^ ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑦 ) ) + 𝑌 ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑥 ∈ 𝑦 𝐵 + 𝑌 ) ) ) |
64 |
8 63
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑥 ∈ 𝑦 𝐵 + 𝑌 ) ) |