| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0rernmpt.xph | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | sge0rernmpt.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | sge0rernmpt.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ( 0 [,] +∞ ) ) | 
						
							| 4 |  | sge0rernmpt.re | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  ℝ ) | 
						
							| 5 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ∈  ℝ* ) | 
						
							| 7 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 8 | 7 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  +∞  ∈  ℝ* ) | 
						
							| 9 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 10 | 9 3 | sselid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ* ) | 
						
							| 11 |  | iccgelb | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  𝐵  ∈  ( 0 [,] +∞ ) )  →  0  ≤  𝐵 ) | 
						
							| 12 | 6 8 3 11 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 13 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝐵  <  +∞ )  →  ¬  𝐵  <  +∞ ) | 
						
							| 14 |  | nltpnft | ⊢ ( 𝐵  ∈  ℝ*  →  ( 𝐵  =  +∞  ↔  ¬  𝐵  <  +∞ ) ) | 
						
							| 15 | 10 14 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐵  =  +∞  ↔  ¬  𝐵  <  +∞ ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝐵  <  +∞ )  →  ( 𝐵  =  +∞  ↔  ¬  𝐵  <  +∞ ) ) | 
						
							| 17 | 13 16 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝐵  <  +∞ )  →  𝐵  =  +∞ ) | 
						
							| 18 | 17 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝐵  <  +∞ )  →  +∞  =  𝐵 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 20 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 21 | 20 | elrnmpt1 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  ( 0 [,] +∞ ) )  →  𝐵  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 22 | 19 3 21 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝐵  <  +∞ )  →  𝐵  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 24 | 18 23 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝐵  <  +∞ )  →  +∞  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 25 | 1 3 20 | fmptdf | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 26 | 2 25 4 | sge0rern | ⊢ ( 𝜑  →  ¬  +∞  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  ¬  𝐵  <  +∞ )  →  ¬  +∞  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 28 | 24 27 | condan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  <  +∞ ) | 
						
							| 29 | 6 8 10 12 28 | elicod | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ( 0 [,) +∞ ) ) |