| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0rernmpt.xph |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
sge0rernmpt.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 3 |
|
sge0rernmpt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 4 |
|
sge0rernmpt.re |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ℝ ) |
| 5 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 6 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ∈ ℝ* ) |
| 7 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 8 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → +∞ ∈ ℝ* ) |
| 9 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 10 |
9 3
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 11 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐵 ) |
| 12 |
6 8 3 11
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
| 13 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝐵 < +∞ ) → ¬ 𝐵 < +∞ ) |
| 14 |
|
nltpnft |
⊢ ( 𝐵 ∈ ℝ* → ( 𝐵 = +∞ ↔ ¬ 𝐵 < +∞ ) ) |
| 15 |
10 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 = +∞ ↔ ¬ 𝐵 < +∞ ) ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝐵 < +∞ ) → ( 𝐵 = +∞ ↔ ¬ 𝐵 < +∞ ) ) |
| 17 |
13 16
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝐵 < +∞ ) → 𝐵 = +∞ ) |
| 18 |
17
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝐵 < +∞ ) → +∞ = 𝐵 ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 20 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 21 |
20
|
elrnmpt1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 22 |
19 3 21
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 23 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝐵 < +∞ ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 24 |
18 23
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝐵 < +∞ ) → +∞ ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 25 |
1 3 20
|
fmptdf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 26 |
2 25 4
|
sge0rern |
⊢ ( 𝜑 → ¬ +∞ ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 27 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝐵 < +∞ ) → ¬ +∞ ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 28 |
24 27
|
condan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 < +∞ ) |
| 29 |
6 8 10 12 28
|
elicod |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |