Metamath Proof Explorer


Theorem sge0rernmpt

Description: If the sum of nonnegative extended reals is not +oo then no term is +oo . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0rernmpt.xph 𝑥 𝜑
sge0rernmpt.a ( 𝜑𝐴𝑉 )
sge0rernmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
sge0rernmpt.re ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) ∈ ℝ )
Assertion sge0rernmpt ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) )

Proof

Step Hyp Ref Expression
1 sge0rernmpt.xph 𝑥 𝜑
2 sge0rernmpt.a ( 𝜑𝐴𝑉 )
3 sge0rernmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
4 sge0rernmpt.re ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴𝐵 ) ) ∈ ℝ )
5 0xr 0 ∈ ℝ*
6 5 a1i ( ( 𝜑𝑥𝐴 ) → 0 ∈ ℝ* )
7 pnfxr +∞ ∈ ℝ*
8 7 a1i ( ( 𝜑𝑥𝐴 ) → +∞ ∈ ℝ* )
9 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
10 9 3 sselid ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
11 iccgelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐵 )
12 6 8 3 11 syl3anc ( ( 𝜑𝑥𝐴 ) → 0 ≤ 𝐵 )
13 simpr ( ( ( 𝜑𝑥𝐴 ) ∧ ¬ 𝐵 < +∞ ) → ¬ 𝐵 < +∞ )
14 nltpnft ( 𝐵 ∈ ℝ* → ( 𝐵 = +∞ ↔ ¬ 𝐵 < +∞ ) )
15 10 14 syl ( ( 𝜑𝑥𝐴 ) → ( 𝐵 = +∞ ↔ ¬ 𝐵 < +∞ ) )
16 15 adantr ( ( ( 𝜑𝑥𝐴 ) ∧ ¬ 𝐵 < +∞ ) → ( 𝐵 = +∞ ↔ ¬ 𝐵 < +∞ ) )
17 13 16 mpbird ( ( ( 𝜑𝑥𝐴 ) ∧ ¬ 𝐵 < +∞ ) → 𝐵 = +∞ )
18 17 eqcomd ( ( ( 𝜑𝑥𝐴 ) ∧ ¬ 𝐵 < +∞ ) → +∞ = 𝐵 )
19 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
20 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
21 20 elrnmpt1 ( ( 𝑥𝐴𝐵 ∈ ( 0 [,] +∞ ) ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
22 19 3 21 syl2anc ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
23 22 adantr ( ( ( 𝜑𝑥𝐴 ) ∧ ¬ 𝐵 < +∞ ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
24 18 23 eqeltrd ( ( ( 𝜑𝑥𝐴 ) ∧ ¬ 𝐵 < +∞ ) → +∞ ∈ ran ( 𝑥𝐴𝐵 ) )
25 1 3 20 fmptdf ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
26 2 25 4 sge0rern ( 𝜑 → ¬ +∞ ∈ ran ( 𝑥𝐴𝐵 ) )
27 26 ad2antrr ( ( ( 𝜑𝑥𝐴 ) ∧ ¬ 𝐵 < +∞ ) → ¬ +∞ ∈ ran ( 𝑥𝐴𝐵 ) )
28 24 27 condan ( ( 𝜑𝑥𝐴 ) → 𝐵 < +∞ )
29 6 8 10 12 28 elicod ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) )