| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0rernmpt.xph |  |-  F/ x ph | 
						
							| 2 |  | sge0rernmpt.a |  |-  ( ph -> A e. V ) | 
						
							| 3 |  | sge0rernmpt.b |  |-  ( ( ph /\ x e. A ) -> B e. ( 0 [,] +oo ) ) | 
						
							| 4 |  | sge0rernmpt.re |  |-  ( ph -> ( sum^ ` ( x e. A |-> B ) ) e. RR ) | 
						
							| 5 |  | 0xr |  |-  0 e. RR* | 
						
							| 6 | 5 | a1i |  |-  ( ( ph /\ x e. A ) -> 0 e. RR* ) | 
						
							| 7 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 8 | 7 | a1i |  |-  ( ( ph /\ x e. A ) -> +oo e. RR* ) | 
						
							| 9 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 10 | 9 3 | sselid |  |-  ( ( ph /\ x e. A ) -> B e. RR* ) | 
						
							| 11 |  | iccgelb |  |-  ( ( 0 e. RR* /\ +oo e. RR* /\ B e. ( 0 [,] +oo ) ) -> 0 <_ B ) | 
						
							| 12 | 6 8 3 11 | syl3anc |  |-  ( ( ph /\ x e. A ) -> 0 <_ B ) | 
						
							| 13 |  | simpr |  |-  ( ( ( ph /\ x e. A ) /\ -. B < +oo ) -> -. B < +oo ) | 
						
							| 14 |  | nltpnft |  |-  ( B e. RR* -> ( B = +oo <-> -. B < +oo ) ) | 
						
							| 15 | 10 14 | syl |  |-  ( ( ph /\ x e. A ) -> ( B = +oo <-> -. B < +oo ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( ph /\ x e. A ) /\ -. B < +oo ) -> ( B = +oo <-> -. B < +oo ) ) | 
						
							| 17 | 13 16 | mpbird |  |-  ( ( ( ph /\ x e. A ) /\ -. B < +oo ) -> B = +oo ) | 
						
							| 18 | 17 | eqcomd |  |-  ( ( ( ph /\ x e. A ) /\ -. B < +oo ) -> +oo = B ) | 
						
							| 19 |  | simpr |  |-  ( ( ph /\ x e. A ) -> x e. A ) | 
						
							| 20 |  | eqid |  |-  ( x e. A |-> B ) = ( x e. A |-> B ) | 
						
							| 21 | 20 | elrnmpt1 |  |-  ( ( x e. A /\ B e. ( 0 [,] +oo ) ) -> B e. ran ( x e. A |-> B ) ) | 
						
							| 22 | 19 3 21 | syl2anc |  |-  ( ( ph /\ x e. A ) -> B e. ran ( x e. A |-> B ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( ph /\ x e. A ) /\ -. B < +oo ) -> B e. ran ( x e. A |-> B ) ) | 
						
							| 24 | 18 23 | eqeltrd |  |-  ( ( ( ph /\ x e. A ) /\ -. B < +oo ) -> +oo e. ran ( x e. A |-> B ) ) | 
						
							| 25 | 1 3 20 | fmptdf |  |-  ( ph -> ( x e. A |-> B ) : A --> ( 0 [,] +oo ) ) | 
						
							| 26 | 2 25 4 | sge0rern |  |-  ( ph -> -. +oo e. ran ( x e. A |-> B ) ) | 
						
							| 27 | 26 | ad2antrr |  |-  ( ( ( ph /\ x e. A ) /\ -. B < +oo ) -> -. +oo e. ran ( x e. A |-> B ) ) | 
						
							| 28 | 24 27 | condan |  |-  ( ( ph /\ x e. A ) -> B < +oo ) | 
						
							| 29 | 6 8 10 12 28 | elicod |  |-  ( ( ph /\ x e. A ) -> B e. ( 0 [,) +oo ) ) |