Step |
Hyp |
Ref |
Expression |
1 |
|
sge0rernmpt.xph |
|- F/ x ph |
2 |
|
sge0rernmpt.a |
|- ( ph -> A e. V ) |
3 |
|
sge0rernmpt.b |
|- ( ( ph /\ x e. A ) -> B e. ( 0 [,] +oo ) ) |
4 |
|
sge0rernmpt.re |
|- ( ph -> ( sum^ ` ( x e. A |-> B ) ) e. RR ) |
5 |
|
0xr |
|- 0 e. RR* |
6 |
5
|
a1i |
|- ( ( ph /\ x e. A ) -> 0 e. RR* ) |
7 |
|
pnfxr |
|- +oo e. RR* |
8 |
7
|
a1i |
|- ( ( ph /\ x e. A ) -> +oo e. RR* ) |
9 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
10 |
9 3
|
sselid |
|- ( ( ph /\ x e. A ) -> B e. RR* ) |
11 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ B e. ( 0 [,] +oo ) ) -> 0 <_ B ) |
12 |
6 8 3 11
|
syl3anc |
|- ( ( ph /\ x e. A ) -> 0 <_ B ) |
13 |
|
simpr |
|- ( ( ( ph /\ x e. A ) /\ -. B < +oo ) -> -. B < +oo ) |
14 |
|
nltpnft |
|- ( B e. RR* -> ( B = +oo <-> -. B < +oo ) ) |
15 |
10 14
|
syl |
|- ( ( ph /\ x e. A ) -> ( B = +oo <-> -. B < +oo ) ) |
16 |
15
|
adantr |
|- ( ( ( ph /\ x e. A ) /\ -. B < +oo ) -> ( B = +oo <-> -. B < +oo ) ) |
17 |
13 16
|
mpbird |
|- ( ( ( ph /\ x e. A ) /\ -. B < +oo ) -> B = +oo ) |
18 |
17
|
eqcomd |
|- ( ( ( ph /\ x e. A ) /\ -. B < +oo ) -> +oo = B ) |
19 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
20 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
21 |
20
|
elrnmpt1 |
|- ( ( x e. A /\ B e. ( 0 [,] +oo ) ) -> B e. ran ( x e. A |-> B ) ) |
22 |
19 3 21
|
syl2anc |
|- ( ( ph /\ x e. A ) -> B e. ran ( x e. A |-> B ) ) |
23 |
22
|
adantr |
|- ( ( ( ph /\ x e. A ) /\ -. B < +oo ) -> B e. ran ( x e. A |-> B ) ) |
24 |
18 23
|
eqeltrd |
|- ( ( ( ph /\ x e. A ) /\ -. B < +oo ) -> +oo e. ran ( x e. A |-> B ) ) |
25 |
1 3 20
|
fmptdf |
|- ( ph -> ( x e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
26 |
2 25 4
|
sge0rern |
|- ( ph -> -. +oo e. ran ( x e. A |-> B ) ) |
27 |
26
|
ad2antrr |
|- ( ( ( ph /\ x e. A ) /\ -. B < +oo ) -> -. +oo e. ran ( x e. A |-> B ) ) |
28 |
24 27
|
condan |
|- ( ( ph /\ x e. A ) -> B < +oo ) |
29 |
6 8 10 12 28
|
elicod |
|- ( ( ph /\ x e. A ) -> B e. ( 0 [,) +oo ) ) |