Metamath Proof Explorer


Theorem sge0clmpt

Description: The generalized sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0clmpt.xph
|- F/ x ph
sge0clmpt.a
|- ( ph -> A e. V )
sge0clmpt.b
|- ( ( ph /\ x e. A ) -> B e. ( 0 [,] +oo ) )
Assertion sge0clmpt
|- ( ph -> ( sum^ ` ( x e. A |-> B ) ) e. ( 0 [,] +oo ) )

Proof

Step Hyp Ref Expression
1 sge0clmpt.xph
 |-  F/ x ph
2 sge0clmpt.a
 |-  ( ph -> A e. V )
3 sge0clmpt.b
 |-  ( ( ph /\ x e. A ) -> B e. ( 0 [,] +oo ) )
4 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
5 1 3 4 fmptdf
 |-  ( ph -> ( x e. A |-> B ) : A --> ( 0 [,] +oo ) )
6 2 5 sge0cl
 |-  ( ph -> ( sum^ ` ( x e. A |-> B ) ) e. ( 0 [,] +oo ) )