Metamath Proof Explorer


Theorem sge0xrclmpt

Description: The generalized sum of nonnegative extended reals is an extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0xrclmpt.xph
|- F/ x ph
sge0xrclmpt.a
|- ( ph -> A e. V )
sge0xrclmpt.b
|- ( ( ph /\ x e. A ) -> B e. ( 0 [,] +oo ) )
Assertion sge0xrclmpt
|- ( ph -> ( sum^ ` ( x e. A |-> B ) ) e. RR* )

Proof

Step Hyp Ref Expression
1 sge0xrclmpt.xph
 |-  F/ x ph
2 sge0xrclmpt.a
 |-  ( ph -> A e. V )
3 sge0xrclmpt.b
 |-  ( ( ph /\ x e. A ) -> B e. ( 0 [,] +oo ) )
4 iccssxr
 |-  ( 0 [,] +oo ) C_ RR*
5 1 2 3 sge0clmpt
 |-  ( ph -> ( sum^ ` ( x e. A |-> B ) ) e. ( 0 [,] +oo ) )
6 4 5 sselid
 |-  ( ph -> ( sum^ ` ( x e. A |-> B ) ) e. RR* )