| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0xp.1 |  |-  F/ k ph | 
						
							| 2 |  | sge0xp.z |  |-  ( z = <. j , k >. -> D = C ) | 
						
							| 3 |  | sge0xp.a |  |-  ( ph -> A e. V ) | 
						
							| 4 |  | sge0xp.b |  |-  ( ph -> B e. W ) | 
						
							| 5 |  | sge0xp.d |  |-  ( ( ph /\ j e. A /\ k e. B ) -> C e. ( 0 [,] +oo ) ) | 
						
							| 6 |  | vsnex |  |-  { j } e. _V | 
						
							| 7 | 6 | a1i |  |-  ( ph -> { j } e. _V ) | 
						
							| 8 | 7 4 | xpexd |  |-  ( ph -> ( { j } X. B ) e. _V ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ j e. A ) -> ( { j } X. B ) e. _V ) | 
						
							| 10 |  | disjsnxp |  |-  Disj_ j e. A ( { j } X. B ) | 
						
							| 11 | 10 | a1i |  |-  ( ph -> Disj_ j e. A ( { j } X. B ) ) | 
						
							| 12 |  | vex |  |-  j e. _V | 
						
							| 13 |  | elsnxp |  |-  ( j e. _V -> ( z e. ( { j } X. B ) <-> E. k e. B z = <. j , k >. ) ) | 
						
							| 14 | 12 13 | ax-mp |  |-  ( z e. ( { j } X. B ) <-> E. k e. B z = <. j , k >. ) | 
						
							| 15 | 14 | biimpi |  |-  ( z e. ( { j } X. B ) -> E. k e. B z = <. j , k >. ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( ph /\ j e. A ) /\ z e. ( { j } X. B ) ) -> E. k e. B z = <. j , k >. ) | 
						
							| 17 |  | nfv |  |-  F/ k j e. A | 
						
							| 18 | 1 17 | nfan |  |-  F/ k ( ph /\ j e. A ) | 
						
							| 19 |  | nfv |  |-  F/ k z e. ( { j } X. B ) | 
						
							| 20 | 18 19 | nfan |  |-  F/ k ( ( ph /\ j e. A ) /\ z e. ( { j } X. B ) ) | 
						
							| 21 |  | nfv |  |-  F/ k D e. ( 0 [,] +oo ) | 
						
							| 22 | 2 | 3ad2ant3 |  |-  ( ( ( ph /\ j e. A ) /\ k e. B /\ z = <. j , k >. ) -> D = C ) | 
						
							| 23 | 5 | 3expa |  |-  ( ( ( ph /\ j e. A ) /\ k e. B ) -> C e. ( 0 [,] +oo ) ) | 
						
							| 24 | 23 | 3adant3 |  |-  ( ( ( ph /\ j e. A ) /\ k e. B /\ z = <. j , k >. ) -> C e. ( 0 [,] +oo ) ) | 
						
							| 25 | 22 24 | eqeltrd |  |-  ( ( ( ph /\ j e. A ) /\ k e. B /\ z = <. j , k >. ) -> D e. ( 0 [,] +oo ) ) | 
						
							| 26 | 25 | 3exp |  |-  ( ( ph /\ j e. A ) -> ( k e. B -> ( z = <. j , k >. -> D e. ( 0 [,] +oo ) ) ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( ph /\ j e. A ) /\ z e. ( { j } X. B ) ) -> ( k e. B -> ( z = <. j , k >. -> D e. ( 0 [,] +oo ) ) ) ) | 
						
							| 28 | 20 21 27 | rexlimd |  |-  ( ( ( ph /\ j e. A ) /\ z e. ( { j } X. B ) ) -> ( E. k e. B z = <. j , k >. -> D e. ( 0 [,] +oo ) ) ) | 
						
							| 29 | 16 28 | mpd |  |-  ( ( ( ph /\ j e. A ) /\ z e. ( { j } X. B ) ) -> D e. ( 0 [,] +oo ) ) | 
						
							| 30 | 29 | 3impa |  |-  ( ( ph /\ j e. A /\ z e. ( { j } X. B ) ) -> D e. ( 0 [,] +oo ) ) | 
						
							| 31 | 3 9 11 30 | sge0iunmpt |  |-  ( ph -> ( sum^ ` ( z e. U_ j e. A ( { j } X. B ) |-> D ) ) = ( sum^ ` ( j e. A |-> ( sum^ ` ( z e. ( { j } X. B ) |-> D ) ) ) ) ) | 
						
							| 32 |  | iunxpconst |  |-  U_ j e. A ( { j } X. B ) = ( A X. B ) | 
						
							| 33 | 32 | eqcomi |  |-  ( A X. B ) = U_ j e. A ( { j } X. B ) | 
						
							| 34 | 33 | a1i |  |-  ( ph -> ( A X. B ) = U_ j e. A ( { j } X. B ) ) | 
						
							| 35 | 34 | mpteq1d |  |-  ( ph -> ( z e. ( A X. B ) |-> D ) = ( z e. U_ j e. A ( { j } X. B ) |-> D ) ) | 
						
							| 36 | 35 | fveq2d |  |-  ( ph -> ( sum^ ` ( z e. ( A X. B ) |-> D ) ) = ( sum^ ` ( z e. U_ j e. A ( { j } X. B ) |-> D ) ) ) | 
						
							| 37 |  | nfv |  |-  F/ j ph | 
						
							| 38 |  | nfv |  |-  F/ z ( ph /\ j e. A ) | 
						
							| 39 | 4 | adantr |  |-  ( ( ph /\ j e. A ) -> B e. W ) | 
						
							| 40 |  | simpr |  |-  ( ( ph /\ j e. A ) -> j e. A ) | 
						
							| 41 |  | eqid |  |-  ( i e. B |-> <. j , i >. ) = ( i e. B |-> <. j , i >. ) | 
						
							| 42 | 40 41 | projf1o |  |-  ( ( ph /\ j e. A ) -> ( i e. B |-> <. j , i >. ) : B -1-1-onto-> ( { j } X. B ) ) | 
						
							| 43 |  | eqidd |  |-  ( ( ph /\ k e. B ) -> ( i e. B |-> <. j , i >. ) = ( i e. B |-> <. j , i >. ) ) | 
						
							| 44 |  | opeq2 |  |-  ( i = k -> <. j , i >. = <. j , k >. ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ( ph /\ k e. B ) /\ i = k ) -> <. j , i >. = <. j , k >. ) | 
						
							| 46 |  | simpr |  |-  ( ( ph /\ k e. B ) -> k e. B ) | 
						
							| 47 |  | opex |  |-  <. j , k >. e. _V | 
						
							| 48 | 47 | a1i |  |-  ( ( ph /\ k e. B ) -> <. j , k >. e. _V ) | 
						
							| 49 | 43 45 46 48 | fvmptd |  |-  ( ( ph /\ k e. B ) -> ( ( i e. B |-> <. j , i >. ) ` k ) = <. j , k >. ) | 
						
							| 50 | 49 | adantlr |  |-  ( ( ( ph /\ j e. A ) /\ k e. B ) -> ( ( i e. B |-> <. j , i >. ) ` k ) = <. j , k >. ) | 
						
							| 51 | 38 18 2 39 42 50 29 | sge0f1o |  |-  ( ( ph /\ j e. A ) -> ( sum^ ` ( z e. ( { j } X. B ) |-> D ) ) = ( sum^ ` ( k e. B |-> C ) ) ) | 
						
							| 52 | 51 | eqcomd |  |-  ( ( ph /\ j e. A ) -> ( sum^ ` ( k e. B |-> C ) ) = ( sum^ ` ( z e. ( { j } X. B ) |-> D ) ) ) | 
						
							| 53 | 37 52 | mpteq2da |  |-  ( ph -> ( j e. A |-> ( sum^ ` ( k e. B |-> C ) ) ) = ( j e. A |-> ( sum^ ` ( z e. ( { j } X. B ) |-> D ) ) ) ) | 
						
							| 54 | 53 | fveq2d |  |-  ( ph -> ( sum^ ` ( j e. A |-> ( sum^ ` ( k e. B |-> C ) ) ) ) = ( sum^ ` ( j e. A |-> ( sum^ ` ( z e. ( { j } X. B ) |-> D ) ) ) ) ) | 
						
							| 55 | 31 36 54 | 3eqtr4rd |  |-  ( ph -> ( sum^ ` ( j e. A |-> ( sum^ ` ( k e. B |-> C ) ) ) ) = ( sum^ ` ( z e. ( A X. B ) |-> D ) ) ) |