Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sge0isummpt.kph | |- F/ k ph |
|
| sge0isummpt.a | |- ( ( ph /\ k e. Z ) -> A e. ( 0 [,) +oo ) ) |
||
| sge0isummpt.m | |- ( ph -> M e. ZZ ) |
||
| sge0isummpt.z | |- Z = ( ZZ>= ` M ) |
||
| sge0isummpt.b | |- ( ph -> seq M ( + , ( k e. Z |-> A ) ) ~~> B ) |
||
| Assertion | sge0isummpt | |- ( ph -> ( sum^ ` ( k e. Z |-> A ) ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0isummpt.kph | |- F/ k ph |
|
| 2 | sge0isummpt.a | |- ( ( ph /\ k e. Z ) -> A e. ( 0 [,) +oo ) ) |
|
| 3 | sge0isummpt.m | |- ( ph -> M e. ZZ ) |
|
| 4 | sge0isummpt.z | |- Z = ( ZZ>= ` M ) |
|
| 5 | sge0isummpt.b | |- ( ph -> seq M ( + , ( k e. Z |-> A ) ) ~~> B ) |
|
| 6 | eqid | |- ( k e. Z |-> A ) = ( k e. Z |-> A ) |
|
| 7 | 1 2 6 | fmptdf | |- ( ph -> ( k e. Z |-> A ) : Z --> ( 0 [,) +oo ) ) |
| 8 | eqid | |- seq M ( + , ( k e. Z |-> A ) ) = seq M ( + , ( k e. Z |-> A ) ) |
|
| 9 | 3 4 7 8 5 | sge0isum | |- ( ph -> ( sum^ ` ( k e. Z |-> A ) ) = B ) |