Metamath Proof Explorer


Theorem sge0isummpt

Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0isummpt.kph
|- F/ k ph
sge0isummpt.a
|- ( ( ph /\ k e. Z ) -> A e. ( 0 [,) +oo ) )
sge0isummpt.m
|- ( ph -> M e. ZZ )
sge0isummpt.z
|- Z = ( ZZ>= ` M )
sge0isummpt.b
|- ( ph -> seq M ( + , ( k e. Z |-> A ) ) ~~> B )
Assertion sge0isummpt
|- ( ph -> ( sum^ ` ( k e. Z |-> A ) ) = B )

Proof

Step Hyp Ref Expression
1 sge0isummpt.kph
 |-  F/ k ph
2 sge0isummpt.a
 |-  ( ( ph /\ k e. Z ) -> A e. ( 0 [,) +oo ) )
3 sge0isummpt.m
 |-  ( ph -> M e. ZZ )
4 sge0isummpt.z
 |-  Z = ( ZZ>= ` M )
5 sge0isummpt.b
 |-  ( ph -> seq M ( + , ( k e. Z |-> A ) ) ~~> B )
6 eqid
 |-  ( k e. Z |-> A ) = ( k e. Z |-> A )
7 1 2 6 fmptdf
 |-  ( ph -> ( k e. Z |-> A ) : Z --> ( 0 [,) +oo ) )
8 eqid
 |-  seq M ( + , ( k e. Z |-> A ) ) = seq M ( + , ( k e. Z |-> A ) )
9 3 4 7 8 5 sge0isum
 |-  ( ph -> ( sum^ ` ( k e. Z |-> A ) ) = B )