Step |
Hyp |
Ref |
Expression |
1 |
|
sge0ad2en.1 |
|- ( ph -> A e. ( 0 [,) +oo ) ) |
2 |
|
nfv |
|- F/ n ph |
3 |
|
0xr |
|- 0 e. RR* |
4 |
3
|
a1i |
|- ( ( ph /\ n e. NN ) -> 0 e. RR* ) |
5 |
|
pnfxr |
|- +oo e. RR* |
6 |
5
|
a1i |
|- ( ( ph /\ n e. NN ) -> +oo e. RR* ) |
7 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
8 |
7 1
|
sselid |
|- ( ph -> A e. RR ) |
9 |
8
|
adantr |
|- ( ( ph /\ n e. NN ) -> A e. RR ) |
10 |
|
2re |
|- 2 e. RR |
11 |
10
|
a1i |
|- ( ( ph /\ n e. NN ) -> 2 e. RR ) |
12 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
13 |
12
|
adantl |
|- ( ( ph /\ n e. NN ) -> n e. NN0 ) |
14 |
11 13
|
reexpcld |
|- ( ( ph /\ n e. NN ) -> ( 2 ^ n ) e. RR ) |
15 |
|
2cnd |
|- ( ( ph /\ n e. NN ) -> 2 e. CC ) |
16 |
|
2ne0 |
|- 2 =/= 0 |
17 |
16
|
a1i |
|- ( ( ph /\ n e. NN ) -> 2 =/= 0 ) |
18 |
13
|
nn0zd |
|- ( ( ph /\ n e. NN ) -> n e. ZZ ) |
19 |
15 17 18
|
expne0d |
|- ( ( ph /\ n e. NN ) -> ( 2 ^ n ) =/= 0 ) |
20 |
9 14 19
|
redivcld |
|- ( ( ph /\ n e. NN ) -> ( A / ( 2 ^ n ) ) e. RR ) |
21 |
20
|
rexrd |
|- ( ( ph /\ n e. NN ) -> ( A / ( 2 ^ n ) ) e. RR* ) |
22 |
|
2rp |
|- 2 e. RR+ |
23 |
22
|
a1i |
|- ( ( ph /\ n e. NN ) -> 2 e. RR+ ) |
24 |
23 18
|
rpexpcld |
|- ( ( ph /\ n e. NN ) -> ( 2 ^ n ) e. RR+ ) |
25 |
3
|
a1i |
|- ( ph -> 0 e. RR* ) |
26 |
5
|
a1i |
|- ( ph -> +oo e. RR* ) |
27 |
|
icogelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ A e. ( 0 [,) +oo ) ) -> 0 <_ A ) |
28 |
25 26 1 27
|
syl3anc |
|- ( ph -> 0 <_ A ) |
29 |
28
|
adantr |
|- ( ( ph /\ n e. NN ) -> 0 <_ A ) |
30 |
9 24 29
|
divge0d |
|- ( ( ph /\ n e. NN ) -> 0 <_ ( A / ( 2 ^ n ) ) ) |
31 |
20
|
ltpnfd |
|- ( ( ph /\ n e. NN ) -> ( A / ( 2 ^ n ) ) < +oo ) |
32 |
4 6 21 30 31
|
elicod |
|- ( ( ph /\ n e. NN ) -> ( A / ( 2 ^ n ) ) e. ( 0 [,) +oo ) ) |
33 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
34 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
35 |
8
|
recnd |
|- ( ph -> A e. CC ) |
36 |
|
eqid |
|- ( n e. NN |-> ( A / ( 2 ^ n ) ) ) = ( n e. NN |-> ( A / ( 2 ^ n ) ) ) |
37 |
36
|
geo2lim |
|- ( A e. CC -> seq 1 ( + , ( n e. NN |-> ( A / ( 2 ^ n ) ) ) ) ~~> A ) |
38 |
35 37
|
syl |
|- ( ph -> seq 1 ( + , ( n e. NN |-> ( A / ( 2 ^ n ) ) ) ) ~~> A ) |
39 |
2 32 33 34 38
|
sge0isummpt |
|- ( ph -> ( sum^ ` ( n e. NN |-> ( A / ( 2 ^ n ) ) ) ) = A ) |