Metamath Proof Explorer


Theorem sge0ad2en

Description: The value of the infinite geometric series 2 ^ -u 1 + 2 ^ -u 2 + ... , multiplied by a constant. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis sge0ad2en.1 ( 𝜑𝐴 ∈ ( 0 [,) +∞ ) )
Assertion sge0ad2en ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑛 ) ) ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 sge0ad2en.1 ( 𝜑𝐴 ∈ ( 0 [,) +∞ ) )
2 nfv 𝑛 𝜑
3 0xr 0 ∈ ℝ*
4 3 a1i ( ( 𝜑𝑛 ∈ ℕ ) → 0 ∈ ℝ* )
5 pnfxr +∞ ∈ ℝ*
6 5 a1i ( ( 𝜑𝑛 ∈ ℕ ) → +∞ ∈ ℝ* )
7 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
8 7 1 sseldi ( 𝜑𝐴 ∈ ℝ )
9 8 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ )
10 2re 2 ∈ ℝ
11 10 a1i ( ( 𝜑𝑛 ∈ ℕ ) → 2 ∈ ℝ )
12 nnnn0 ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 )
13 12 adantl ( ( 𝜑𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 )
14 11 13 reexpcld ( ( 𝜑𝑛 ∈ ℕ ) → ( 2 ↑ 𝑛 ) ∈ ℝ )
15 2cnd ( ( 𝜑𝑛 ∈ ℕ ) → 2 ∈ ℂ )
16 2ne0 2 ≠ 0
17 16 a1i ( ( 𝜑𝑛 ∈ ℕ ) → 2 ≠ 0 )
18 13 nn0zd ( ( 𝜑𝑛 ∈ ℕ ) → 𝑛 ∈ ℤ )
19 15 17 18 expne0d ( ( 𝜑𝑛 ∈ ℕ ) → ( 2 ↑ 𝑛 ) ≠ 0 )
20 9 14 19 redivcld ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐴 / ( 2 ↑ 𝑛 ) ) ∈ ℝ )
21 20 rexrd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐴 / ( 2 ↑ 𝑛 ) ) ∈ ℝ* )
22 2rp 2 ∈ ℝ+
23 22 a1i ( ( 𝜑𝑛 ∈ ℕ ) → 2 ∈ ℝ+ )
24 23 18 rpexpcld ( ( 𝜑𝑛 ∈ ℕ ) → ( 2 ↑ 𝑛 ) ∈ ℝ+ )
25 3 a1i ( 𝜑 → 0 ∈ ℝ* )
26 5 a1i ( 𝜑 → +∞ ∈ ℝ* )
27 icogelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ ( 0 [,) +∞ ) ) → 0 ≤ 𝐴 )
28 25 26 1 27 syl3anc ( 𝜑 → 0 ≤ 𝐴 )
29 28 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 0 ≤ 𝐴 )
30 9 24 29 divge0d ( ( 𝜑𝑛 ∈ ℕ ) → 0 ≤ ( 𝐴 / ( 2 ↑ 𝑛 ) ) )
31 20 ltpnfd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐴 / ( 2 ↑ 𝑛 ) ) < +∞ )
32 4 6 21 30 31 elicod ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐴 / ( 2 ↑ 𝑛 ) ) ∈ ( 0 [,) +∞ ) )
33 1zzd ( 𝜑 → 1 ∈ ℤ )
34 nnuz ℕ = ( ℤ ‘ 1 )
35 8 recnd ( 𝜑𝐴 ∈ ℂ )
36 eqid ( 𝑛 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑛 ) ) )
37 36 geo2lim ( 𝐴 ∈ ℂ → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑛 ) ) ) ) ⇝ 𝐴 )
38 35 37 syl ( 𝜑 → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑛 ) ) ) ) ⇝ 𝐴 )
39 2 32 33 34 38 sge0isummpt ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑛 ) ) ) ) = 𝐴 )