Step |
Hyp |
Ref |
Expression |
1 |
|
sge0ad2en.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( 0 [,) +∞ ) ) |
2 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
3 |
|
0xr |
⊢ 0 ∈ ℝ* |
4 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ∈ ℝ* ) |
5 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
6 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → +∞ ∈ ℝ* ) |
7 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
8 |
7 1
|
sselid |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
10 |
|
2re |
⊢ 2 ∈ ℝ |
11 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 2 ∈ ℝ ) |
12 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
14 |
11 13
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
15 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 2 ∈ ℂ ) |
16 |
|
2ne0 |
⊢ 2 ≠ 0 |
17 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 2 ≠ 0 ) |
18 |
13
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℤ ) |
19 |
15 17 18
|
expne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 ↑ 𝑛 ) ≠ 0 ) |
20 |
9 14 19
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
21 |
20
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 / ( 2 ↑ 𝑛 ) ) ∈ ℝ* ) |
22 |
|
2rp |
⊢ 2 ∈ ℝ+ |
23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 2 ∈ ℝ+ ) |
24 |
23 18
|
rpexpcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 ↑ 𝑛 ) ∈ ℝ+ ) |
25 |
3
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
26 |
5
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
27 |
|
icogelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ ( 0 [,) +∞ ) ) → 0 ≤ 𝐴 ) |
28 |
25 26 1 27
|
syl3anc |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ 𝐴 ) |
30 |
9 24 29
|
divge0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( 𝐴 / ( 2 ↑ 𝑛 ) ) ) |
31 |
20
|
ltpnfd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 / ( 2 ↑ 𝑛 ) ) < +∞ ) |
32 |
4 6 21 30 31
|
elicod |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 / ( 2 ↑ 𝑛 ) ) ∈ ( 0 [,) +∞ ) ) |
33 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
34 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
35 |
8
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
36 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑛 ) ) ) |
37 |
36
|
geo2lim |
⊢ ( 𝐴 ∈ ℂ → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑛 ) ) ) ) ⇝ 𝐴 ) |
38 |
35 37
|
syl |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑛 ) ) ) ) ⇝ 𝐴 ) |
39 |
2 32 33 34 38
|
sge0isummpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑛 ) ) ) ) = 𝐴 ) |