Metamath Proof Explorer


Theorem sge0isummpt

Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0isummpt.kph 𝑘 𝜑
sge0isummpt.a ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ( 0 [,) +∞ ) )
sge0isummpt.m ( 𝜑𝑀 ∈ ℤ )
sge0isummpt.z 𝑍 = ( ℤ𝑀 )
sge0isummpt.b ( 𝜑 → seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) ) ⇝ 𝐵 )
Assertion sge0isummpt ( 𝜑 → ( Σ^ ‘ ( 𝑘𝑍𝐴 ) ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 sge0isummpt.kph 𝑘 𝜑
2 sge0isummpt.a ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ( 0 [,) +∞ ) )
3 sge0isummpt.m ( 𝜑𝑀 ∈ ℤ )
4 sge0isummpt.z 𝑍 = ( ℤ𝑀 )
5 sge0isummpt.b ( 𝜑 → seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) ) ⇝ 𝐵 )
6 eqid ( 𝑘𝑍𝐴 ) = ( 𝑘𝑍𝐴 )
7 1 2 6 fmptdf ( 𝜑 → ( 𝑘𝑍𝐴 ) : 𝑍 ⟶ ( 0 [,) +∞ ) )
8 eqid seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) ) = seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) )
9 3 4 7 8 5 sge0isum ( 𝜑 → ( Σ^ ‘ ( 𝑘𝑍𝐴 ) ) = 𝐵 )