Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sge0isummpt.kph | ⊢ Ⅎ 𝑘 𝜑 | |
sge0isummpt.a | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ( 0 [,) +∞ ) ) | ||
sge0isummpt.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
sge0isummpt.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
sge0isummpt.b | ⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ⇝ 𝐵 ) | ||
Assertion | sge0isummpt | ⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0isummpt.kph | ⊢ Ⅎ 𝑘 𝜑 | |
2 | sge0isummpt.a | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ( 0 [,) +∞ ) ) | |
3 | sge0isummpt.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
4 | sge0isummpt.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
5 | sge0isummpt.b | ⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ⇝ 𝐵 ) | |
6 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) = ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) | |
7 | 1 2 6 | fmptdf | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) : 𝑍 ⟶ ( 0 [,) +∞ ) ) |
8 | eqid | ⊢ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) = seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) | |
9 | 3 4 7 8 5 | sge0isum | ⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) = 𝐵 ) |