Step |
Hyp |
Ref |
Expression |
1 |
|
sge0isummpt2.kph |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
sge0isummpt2.a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
3 |
|
sge0isummpt2.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
sge0isummpt2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
5 |
|
sge0isummpt2.b |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ⇝ 𝐵 ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
7 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝑍 |
8 |
1 7
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
10 |
9
|
nfcsb1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐴 |
11 |
10
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ( 0 [,) +∞ ) |
12 |
8 11
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ( 0 [,) +∞ ) ) |
13 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) |
14 |
13
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ) ) |
15 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐴 = ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
16 |
15
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ( 0 [,) +∞ ) ) ) |
17 |
14 16
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ( 0 [,) +∞ ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ( 0 [,) +∞ ) ) ) ) |
18 |
12 17 2
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ( 0 [,) +∞ ) ) |
19 |
|
nfcv |
⊢ Ⅎ 𝑖 𝐴 |
20 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐴 |
21 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑖 → 𝐴 = ⦋ 𝑖 / 𝑘 ⦌ 𝐴 ) |
22 |
19 20 21
|
cbvmpt |
⊢ ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) = ( 𝑖 ∈ 𝑍 ↦ ⦋ 𝑖 / 𝑘 ⦌ 𝐴 ) |
23 |
22
|
eqcomi |
⊢ ( 𝑖 ∈ 𝑍 ↦ ⦋ 𝑖 / 𝑘 ⦌ 𝐴 ) = ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) |
24 |
9 10 15 23
|
fvmptf |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑖 ∈ 𝑍 ↦ ⦋ 𝑖 / 𝑘 ⦌ 𝐴 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
25 |
6 18 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑖 ∈ 𝑍 ↦ ⦋ 𝑖 / 𝑘 ⦌ 𝐴 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
26 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
27 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
28 |
26 27
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
29 |
28 18
|
sseldi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
30 |
22
|
a1i |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) = ( 𝑖 ∈ 𝑍 ↦ ⦋ 𝑖 / 𝑘 ⦌ 𝐴 ) ) |
31 |
30
|
seqeq3d |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) = seq 𝑀 ( + , ( 𝑖 ∈ 𝑍 ↦ ⦋ 𝑖 / 𝑘 ⦌ 𝐴 ) ) ) |
32 |
31
|
breq1d |
⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ⇝ 𝐵 ↔ seq 𝑀 ( + , ( 𝑖 ∈ 𝑍 ↦ ⦋ 𝑖 / 𝑘 ⦌ 𝐴 ) ) ⇝ 𝐵 ) ) |
33 |
5 32
|
mpbid |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑖 ∈ 𝑍 ↦ ⦋ 𝑖 / 𝑘 ⦌ 𝐴 ) ) ⇝ 𝐵 ) |
34 |
4 3 25 29 33
|
isumclim |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑍 ⦋ 𝑗 / 𝑘 ⦌ 𝐴 = 𝐵 ) |
35 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑍 |
36 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑍 |
37 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐴 |
38 |
15 35 36 37 10
|
cbvsum |
⊢ Σ 𝑘 ∈ 𝑍 𝐴 = Σ 𝑗 ∈ 𝑍 ⦋ 𝑗 / 𝑘 ⦌ 𝐴 |
39 |
38
|
a1i |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = Σ 𝑗 ∈ 𝑍 ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
40 |
1 2 3 4 5
|
sge0isummpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) = 𝐵 ) |
41 |
34 39 40
|
3eqtr4rd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) = Σ 𝑘 ∈ 𝑍 𝐴 ) |