Metamath Proof Explorer


Theorem sge0isummpt2

Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0isummpt2.kph 𝑘 𝜑
sge0isummpt2.a ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ( 0 [,) +∞ ) )
sge0isummpt2.m ( 𝜑𝑀 ∈ ℤ )
sge0isummpt2.z 𝑍 = ( ℤ𝑀 )
sge0isummpt2.b ( 𝜑 → seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) ) ⇝ 𝐵 )
Assertion sge0isummpt2 ( 𝜑 → ( Σ^ ‘ ( 𝑘𝑍𝐴 ) ) = Σ 𝑘𝑍 𝐴 )

Proof

Step Hyp Ref Expression
1 sge0isummpt2.kph 𝑘 𝜑
2 sge0isummpt2.a ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ( 0 [,) +∞ ) )
3 sge0isummpt2.m ( 𝜑𝑀 ∈ ℤ )
4 sge0isummpt2.z 𝑍 = ( ℤ𝑀 )
5 sge0isummpt2.b ( 𝜑 → seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) ) ⇝ 𝐵 )
6 simpr ( ( 𝜑𝑗𝑍 ) → 𝑗𝑍 )
7 nfv 𝑘 𝑗𝑍
8 1 7 nfan 𝑘 ( 𝜑𝑗𝑍 )
9 nfcv 𝑘 𝑗
10 9 nfcsb1 𝑘 𝑗 / 𝑘 𝐴
11 10 nfel1 𝑘 𝑗 / 𝑘 𝐴 ∈ ( 0 [,) +∞ )
12 8 11 nfim 𝑘 ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐴 ∈ ( 0 [,) +∞ ) )
13 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝑍𝑗𝑍 ) )
14 13 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝑍 ) ↔ ( 𝜑𝑗𝑍 ) ) )
15 csbeq1a ( 𝑘 = 𝑗𝐴 = 𝑗 / 𝑘 𝐴 )
16 15 eleq1d ( 𝑘 = 𝑗 → ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ 𝑗 / 𝑘 𝐴 ∈ ( 0 [,) +∞ ) ) )
17 14 16 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ( 0 [,) +∞ ) ) ↔ ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐴 ∈ ( 0 [,) +∞ ) ) ) )
18 12 17 2 chvarfv ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐴 ∈ ( 0 [,) +∞ ) )
19 nfcv 𝑖 𝐴
20 nfcsb1v 𝑘 𝑖 / 𝑘 𝐴
21 csbeq1a ( 𝑘 = 𝑖𝐴 = 𝑖 / 𝑘 𝐴 )
22 19 20 21 cbvmpt ( 𝑘𝑍𝐴 ) = ( 𝑖𝑍 𝑖 / 𝑘 𝐴 )
23 22 eqcomi ( 𝑖𝑍 𝑖 / 𝑘 𝐴 ) = ( 𝑘𝑍𝐴 )
24 9 10 15 23 fvmptf ( ( 𝑗𝑍 𝑗 / 𝑘 𝐴 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑖𝑍 𝑖 / 𝑘 𝐴 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐴 )
25 6 18 24 syl2anc ( ( 𝜑𝑗𝑍 ) → ( ( 𝑖𝑍 𝑖 / 𝑘 𝐴 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐴 )
26 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
27 ax-resscn ℝ ⊆ ℂ
28 26 27 sstri ( 0 [,) +∞ ) ⊆ ℂ
29 28 18 sseldi ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐴 ∈ ℂ )
30 22 a1i ( 𝜑 → ( 𝑘𝑍𝐴 ) = ( 𝑖𝑍 𝑖 / 𝑘 𝐴 ) )
31 30 seqeq3d ( 𝜑 → seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) ) = seq 𝑀 ( + , ( 𝑖𝑍 𝑖 / 𝑘 𝐴 ) ) )
32 31 breq1d ( 𝜑 → ( seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) ) ⇝ 𝐵 ↔ seq 𝑀 ( + , ( 𝑖𝑍 𝑖 / 𝑘 𝐴 ) ) ⇝ 𝐵 ) )
33 5 32 mpbid ( 𝜑 → seq 𝑀 ( + , ( 𝑖𝑍 𝑖 / 𝑘 𝐴 ) ) ⇝ 𝐵 )
34 4 3 25 29 33 isumclim ( 𝜑 → Σ 𝑗𝑍 𝑗 / 𝑘 𝐴 = 𝐵 )
35 nfcv 𝑗 𝑍
36 nfcv 𝑘 𝑍
37 nfcv 𝑗 𝐴
38 15 35 36 37 10 cbvsum Σ 𝑘𝑍 𝐴 = Σ 𝑗𝑍 𝑗 / 𝑘 𝐴
39 38 a1i ( 𝜑 → Σ 𝑘𝑍 𝐴 = Σ 𝑗𝑍 𝑗 / 𝑘 𝐴 )
40 1 2 3 4 5 sge0isummpt ( 𝜑 → ( Σ^ ‘ ( 𝑘𝑍𝐴 ) ) = 𝐵 )
41 34 39 40 3eqtr4rd ( 𝜑 → ( Σ^ ‘ ( 𝑘𝑍𝐴 ) ) = Σ 𝑘𝑍 𝐴 )