Metamath Proof Explorer


Theorem sge0isummpt2

Description: If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0isummpt2.kph k φ
sge0isummpt2.a φ k Z A 0 +∞
sge0isummpt2.m φ M
sge0isummpt2.z Z = M
sge0isummpt2.b φ seq M + k Z A B
Assertion sge0isummpt2 φ sum^ k Z A = k Z A

Proof

Step Hyp Ref Expression
1 sge0isummpt2.kph k φ
2 sge0isummpt2.a φ k Z A 0 +∞
3 sge0isummpt2.m φ M
4 sge0isummpt2.z Z = M
5 sge0isummpt2.b φ seq M + k Z A B
6 simpr φ j Z j Z
7 nfv k j Z
8 1 7 nfan k φ j Z
9 nfcv _ k j
10 9 nfcsb1 _ k j / k A
11 10 nfel1 k j / k A 0 +∞
12 8 11 nfim k φ j Z j / k A 0 +∞
13 eleq1w k = j k Z j Z
14 13 anbi2d k = j φ k Z φ j Z
15 csbeq1a k = j A = j / k A
16 15 eleq1d k = j A 0 +∞ j / k A 0 +∞
17 14 16 imbi12d k = j φ k Z A 0 +∞ φ j Z j / k A 0 +∞
18 12 17 2 chvarfv φ j Z j / k A 0 +∞
19 nfcv _ i A
20 nfcsb1v _ k i / k A
21 csbeq1a k = i A = i / k A
22 19 20 21 cbvmpt k Z A = i Z i / k A
23 22 eqcomi i Z i / k A = k Z A
24 9 10 15 23 fvmptf j Z j / k A 0 +∞ i Z i / k A j = j / k A
25 6 18 24 syl2anc φ j Z i Z i / k A j = j / k A
26 rge0ssre 0 +∞
27 ax-resscn
28 26 27 sstri 0 +∞
29 28 18 sselid φ j Z j / k A
30 22 a1i φ k Z A = i Z i / k A
31 30 seqeq3d φ seq M + k Z A = seq M + i Z i / k A
32 31 breq1d φ seq M + k Z A B seq M + i Z i / k A B
33 5 32 mpbid φ seq M + i Z i / k A B
34 4 3 25 29 33 isumclim φ j Z j / k A = B
35 nfcv _ j Z
36 nfcv _ k Z
37 nfcv _ j A
38 15 35 36 37 10 cbvsum k Z A = j Z j / k A
39 38 a1i φ k Z A = j Z j / k A
40 1 2 3 4 5 sge0isummpt φ sum^ k Z A = B
41 34 39 40 3eqtr4rd φ sum^ k Z A = k Z A