Step |
Hyp |
Ref |
Expression |
1 |
|
sge0xaddlem1.a |
|
2 |
|
sge0xaddlem1.b |
|
3 |
|
sge0xaddlem1.c |
|
4 |
|
sge0xaddlem1.rp |
|
5 |
|
sge0xaddlem1.u |
|
6 |
|
sge0xaddlem1.ufi |
|
7 |
|
sge0xaddlem1.7 |
|
8 |
|
sge0xaddlem1.wfi |
|
9 |
|
sge0xaddlem1.ltb |
|
10 |
|
sge0xaddlem1.ltc |
|
11 |
|
sge0xaddlem1.xr |
|
12 |
|
sge0xaddlem1.sb |
|
13 |
|
sge0xaddlem1.sc |
|
14 |
|
nfv |
|
15 |
14 1 2
|
sge0revalmpt |
|
16 |
14 1 3
|
sge0revalmpt |
|
17 |
15 16
|
oveq12d |
|
18 |
15
|
eqcomd |
|
19 |
18 12
|
eqeltrd |
|
20 |
16 13
|
eqeltrrd |
|
21 |
19 20
|
readdcld |
|
22 |
21
|
rexrd |
|
23 |
17 22
|
eqeltrd |
|
24 |
|
elinel2 |
|
25 |
24
|
adantl |
|
26 |
|
simpll |
|
27 |
|
elpwinss |
|
28 |
27
|
adantr |
|
29 |
|
simpr |
|
30 |
28 29
|
sseldd |
|
31 |
30
|
adantll |
|
32 |
|
rge0ssre |
|
33 |
32 2
|
sselid |
|
34 |
26 31 33
|
syl2anc |
|
35 |
32 3
|
sselid |
|
36 |
26 31 35
|
syl2anc |
|
37 |
34 36
|
readdcld |
|
38 |
25 37
|
fsumrecl |
|
39 |
38
|
rexrd |
|
40 |
39
|
ralrimiva |
|
41 |
|
eqid |
|
42 |
41
|
rnmptss |
|
43 |
40 42
|
syl |
|
44 |
|
supxrcl |
|
45 |
43 44
|
syl |
|
46 |
4
|
rpxrd |
|
47 |
45 46
|
xaddcld |
|
48 |
|
simpl |
|
49 |
5
|
sselda |
|
50 |
48 49 2
|
syl2anc |
|
51 |
32 50
|
sselid |
|
52 |
6 51
|
fsumrecl |
|
53 |
4
|
rpred |
|
54 |
53
|
rehalfcld |
|
55 |
52 54
|
readdcld |
|
56 |
32
|
a1i |
|
57 |
|
simpl |
|
58 |
7
|
adantr |
|
59 |
|
simpr |
|
60 |
58 59
|
sseldd |
|
61 |
57 60 3
|
syl2anc |
|
62 |
56 61
|
sseldd |
|
63 |
8 62
|
fsumrecl |
|
64 |
63 54
|
readdcld |
|
65 |
55 64
|
readdcld |
|
66 |
65
|
rexrd |
|
67 |
12 13 55 64 9 10
|
ltadd12dd |
|
68 |
52
|
recnd |
|
69 |
54
|
recnd |
|
70 |
63
|
recnd |
|
71 |
68 69 70 69
|
add4d |
|
72 |
53
|
recnd |
|
73 |
72
|
2halvesd |
|
74 |
73
|
oveq2d |
|
75 |
71 74
|
eqtrd |
|
76 |
75 66
|
eqeltrrd |
|
77 |
|
pnfxr |
|
78 |
77
|
a1i |
|
79 |
75 65
|
eqeltrrd |
|
80 |
|
ltpnf |
|
81 |
79 80
|
syl |
|
82 |
76 78 81
|
xrltled |
|
83 |
82
|
adantr |
|
84 |
|
oveq1 |
|
85 |
84
|
adantl |
|
86 |
53
|
renemnfd |
|
87 |
|
xaddpnf2 |
|
88 |
46 86 87
|
syl2anc |
|
89 |
88
|
adantr |
|
90 |
85 89
|
eqtr2d |
|
91 |
83 90
|
breqtrd |
|
92 |
|
simpl |
|
93 |
92 11
|
syl |
|
94 |
|
neqne |
|
95 |
94
|
adantl |
|
96 |
|
ge0xrre |
|
97 |
93 95 96
|
syl2anc |
|
98 |
52 63
|
readdcld |
|
99 |
98
|
adantr |
|
100 |
|
simpr |
|
101 |
53
|
adantr |
|
102 |
6 8
|
jca |
|
103 |
|
unfi |
|
104 |
102 103
|
syl |
|
105 |
|
simpl |
|
106 |
5 7
|
unssd |
|
107 |
106
|
adantr |
|
108 |
|
simpr |
|
109 |
107 108
|
sseldd |
|
110 |
105 109 33
|
syl2anc |
|
111 |
109 35
|
syldan |
|
112 |
110 111
|
readdcld |
|
113 |
104 112
|
fsumrecl |
|
114 |
113
|
adantr |
|
115 |
104 110
|
fsumrecl |
|
116 |
104 111
|
fsumrecl |
|
117 |
|
icossicc |
|
118 |
117 2
|
sselid |
|
119 |
|
xrge0ge0 |
|
120 |
118 119
|
syl |
|
121 |
109 120
|
syldan |
|
122 |
|
ssun1 |
|
123 |
122
|
a1i |
|
124 |
104 110 121 123
|
fsumless |
|
125 |
117 3
|
sselid |
|
126 |
|
xrge0ge0 |
|
127 |
125 126
|
syl |
|
128 |
109 127
|
syldan |
|
129 |
|
ssun2 |
|
130 |
129
|
a1i |
|
131 |
104 111 128 130
|
fsumless |
|
132 |
52 63 115 116 124 131
|
leadd12dd |
|
133 |
110
|
recnd |
|
134 |
111
|
recnd |
|
135 |
104 133 134
|
fsumadd |
|
136 |
135
|
eqcomd |
|
137 |
132 136
|
breqtrd |
|
138 |
137
|
adantr |
|
139 |
43
|
adantr |
|
140 |
104 106
|
elpwd |
|
141 |
140 104
|
elind |
|
142 |
113
|
elexd |
|
143 |
|
sumeq1 |
|
144 |
41 143
|
elrnmpt1s |
|
145 |
141 142 144
|
syl2anc |
|
146 |
145
|
adantr |
|
147 |
|
supxrub |
|
148 |
139 146 147
|
syl2anc |
|
149 |
99 114 100 138 148
|
letrd |
|
150 |
99 100 101 149
|
leadd1dd |
|
151 |
|
rexadd |
|
152 |
100 101 151
|
syl2anc |
|
153 |
152
|
eqcomd |
|
154 |
150 153
|
breqtrd |
|
155 |
92 97 154
|
syl2anc |
|
156 |
91 155
|
pm2.61dan |
|
157 |
75 156
|
eqbrtrd |
|
158 |
23 66 47 67 157
|
xrltletrd |
|
159 |
23 47 158
|
xrltled |
|