| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0xaddlem1.a |
|- ( ph -> A e. V ) |
| 2 |
|
sge0xaddlem1.b |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) ) |
| 3 |
|
sge0xaddlem1.c |
|- ( ( ph /\ k e. A ) -> C e. ( 0 [,) +oo ) ) |
| 4 |
|
sge0xaddlem1.rp |
|- ( ph -> E e. RR+ ) |
| 5 |
|
sge0xaddlem1.u |
|- ( ph -> U C_ A ) |
| 6 |
|
sge0xaddlem1.ufi |
|- ( ph -> U e. Fin ) |
| 7 |
|
sge0xaddlem1.7 |
|- ( ph -> W C_ A ) |
| 8 |
|
sge0xaddlem1.wfi |
|- ( ph -> W e. Fin ) |
| 9 |
|
sge0xaddlem1.ltb |
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. U B + ( E / 2 ) ) ) |
| 10 |
|
sge0xaddlem1.ltc |
|- ( ph -> ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. W C + ( E / 2 ) ) ) |
| 11 |
|
sge0xaddlem1.xr |
|- ( ph -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. ( 0 [,] +oo ) ) |
| 12 |
|
sge0xaddlem1.sb |
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) e. RR ) |
| 13 |
|
sge0xaddlem1.sc |
|- ( ph -> ( sum^ ` ( k e. A |-> C ) ) e. RR ) |
| 14 |
|
nfv |
|- F/ k ph |
| 15 |
14 1 2
|
sge0revalmpt |
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) = sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) ) |
| 16 |
14 1 3
|
sge0revalmpt |
|- ( ph -> ( sum^ ` ( k e. A |-> C ) ) = sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) |
| 17 |
15 16
|
oveq12d |
|- ( ph -> ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) = ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) ) |
| 18 |
15
|
eqcomd |
|- ( ph -> sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) = ( sum^ ` ( k e. A |-> B ) ) ) |
| 19 |
18 12
|
eqeltrd |
|- ( ph -> sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) e. RR ) |
| 20 |
16 13
|
eqeltrrd |
|- ( ph -> sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) e. RR ) |
| 21 |
19 20
|
readdcld |
|- ( ph -> ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) e. RR ) |
| 22 |
21
|
rexrd |
|- ( ph -> ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) e. RR* ) |
| 23 |
17 22
|
eqeltrd |
|- ( ph -> ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) e. RR* ) |
| 24 |
|
elinel2 |
|- ( x e. ( ~P A i^i Fin ) -> x e. Fin ) |
| 25 |
24
|
adantl |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> x e. Fin ) |
| 26 |
|
simpll |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> ph ) |
| 27 |
|
elpwinss |
|- ( x e. ( ~P A i^i Fin ) -> x C_ A ) |
| 28 |
27
|
adantr |
|- ( ( x e. ( ~P A i^i Fin ) /\ k e. x ) -> x C_ A ) |
| 29 |
|
simpr |
|- ( ( x e. ( ~P A i^i Fin ) /\ k e. x ) -> k e. x ) |
| 30 |
28 29
|
sseldd |
|- ( ( x e. ( ~P A i^i Fin ) /\ k e. x ) -> k e. A ) |
| 31 |
30
|
adantll |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> k e. A ) |
| 32 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 33 |
32 2
|
sselid |
|- ( ( ph /\ k e. A ) -> B e. RR ) |
| 34 |
26 31 33
|
syl2anc |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> B e. RR ) |
| 35 |
32 3
|
sselid |
|- ( ( ph /\ k e. A ) -> C e. RR ) |
| 36 |
26 31 35
|
syl2anc |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> C e. RR ) |
| 37 |
34 36
|
readdcld |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> ( B + C ) e. RR ) |
| 38 |
25 37
|
fsumrecl |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ k e. x ( B + C ) e. RR ) |
| 39 |
38
|
rexrd |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ k e. x ( B + C ) e. RR* ) |
| 40 |
39
|
ralrimiva |
|- ( ph -> A. x e. ( ~P A i^i Fin ) sum_ k e. x ( B + C ) e. RR* ) |
| 41 |
|
eqid |
|- ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) = ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) |
| 42 |
41
|
rnmptss |
|- ( A. x e. ( ~P A i^i Fin ) sum_ k e. x ( B + C ) e. RR* -> ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) C_ RR* ) |
| 43 |
40 42
|
syl |
|- ( ph -> ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) C_ RR* ) |
| 44 |
|
supxrcl |
|- ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) C_ RR* -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR* ) |
| 45 |
43 44
|
syl |
|- ( ph -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR* ) |
| 46 |
4
|
rpxrd |
|- ( ph -> E e. RR* ) |
| 47 |
45 46
|
xaddcld |
|- ( ph -> ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e E ) e. RR* ) |
| 48 |
|
simpl |
|- ( ( ph /\ k e. U ) -> ph ) |
| 49 |
5
|
sselda |
|- ( ( ph /\ k e. U ) -> k e. A ) |
| 50 |
48 49 2
|
syl2anc |
|- ( ( ph /\ k e. U ) -> B e. ( 0 [,) +oo ) ) |
| 51 |
32 50
|
sselid |
|- ( ( ph /\ k e. U ) -> B e. RR ) |
| 52 |
6 51
|
fsumrecl |
|- ( ph -> sum_ k e. U B e. RR ) |
| 53 |
4
|
rpred |
|- ( ph -> E e. RR ) |
| 54 |
53
|
rehalfcld |
|- ( ph -> ( E / 2 ) e. RR ) |
| 55 |
52 54
|
readdcld |
|- ( ph -> ( sum_ k e. U B + ( E / 2 ) ) e. RR ) |
| 56 |
32
|
a1i |
|- ( ( ph /\ k e. W ) -> ( 0 [,) +oo ) C_ RR ) |
| 57 |
|
simpl |
|- ( ( ph /\ k e. W ) -> ph ) |
| 58 |
7
|
adantr |
|- ( ( ph /\ k e. W ) -> W C_ A ) |
| 59 |
|
simpr |
|- ( ( ph /\ k e. W ) -> k e. W ) |
| 60 |
58 59
|
sseldd |
|- ( ( ph /\ k e. W ) -> k e. A ) |
| 61 |
57 60 3
|
syl2anc |
|- ( ( ph /\ k e. W ) -> C e. ( 0 [,) +oo ) ) |
| 62 |
56 61
|
sseldd |
|- ( ( ph /\ k e. W ) -> C e. RR ) |
| 63 |
8 62
|
fsumrecl |
|- ( ph -> sum_ k e. W C e. RR ) |
| 64 |
63 54
|
readdcld |
|- ( ph -> ( sum_ k e. W C + ( E / 2 ) ) e. RR ) |
| 65 |
55 64
|
readdcld |
|- ( ph -> ( ( sum_ k e. U B + ( E / 2 ) ) + ( sum_ k e. W C + ( E / 2 ) ) ) e. RR ) |
| 66 |
65
|
rexrd |
|- ( ph -> ( ( sum_ k e. U B + ( E / 2 ) ) + ( sum_ k e. W C + ( E / 2 ) ) ) e. RR* ) |
| 67 |
12 13 55 64 9 10
|
ltadd12dd |
|- ( ph -> ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) < ( ( sum_ k e. U B + ( E / 2 ) ) + ( sum_ k e. W C + ( E / 2 ) ) ) ) |
| 68 |
52
|
recnd |
|- ( ph -> sum_ k e. U B e. CC ) |
| 69 |
54
|
recnd |
|- ( ph -> ( E / 2 ) e. CC ) |
| 70 |
63
|
recnd |
|- ( ph -> sum_ k e. W C e. CC ) |
| 71 |
68 69 70 69
|
add4d |
|- ( ph -> ( ( sum_ k e. U B + ( E / 2 ) ) + ( sum_ k e. W C + ( E / 2 ) ) ) = ( ( sum_ k e. U B + sum_ k e. W C ) + ( ( E / 2 ) + ( E / 2 ) ) ) ) |
| 72 |
53
|
recnd |
|- ( ph -> E e. CC ) |
| 73 |
72
|
2halvesd |
|- ( ph -> ( ( E / 2 ) + ( E / 2 ) ) = E ) |
| 74 |
73
|
oveq2d |
|- ( ph -> ( ( sum_ k e. U B + sum_ k e. W C ) + ( ( E / 2 ) + ( E / 2 ) ) ) = ( ( sum_ k e. U B + sum_ k e. W C ) + E ) ) |
| 75 |
71 74
|
eqtrd |
|- ( ph -> ( ( sum_ k e. U B + ( E / 2 ) ) + ( sum_ k e. W C + ( E / 2 ) ) ) = ( ( sum_ k e. U B + sum_ k e. W C ) + E ) ) |
| 76 |
75 66
|
eqeltrrd |
|- ( ph -> ( ( sum_ k e. U B + sum_ k e. W C ) + E ) e. RR* ) |
| 77 |
|
pnfxr |
|- +oo e. RR* |
| 78 |
77
|
a1i |
|- ( ph -> +oo e. RR* ) |
| 79 |
75 65
|
eqeltrrd |
|- ( ph -> ( ( sum_ k e. U B + sum_ k e. W C ) + E ) e. RR ) |
| 80 |
|
ltpnf |
|- ( ( ( sum_ k e. U B + sum_ k e. W C ) + E ) e. RR -> ( ( sum_ k e. U B + sum_ k e. W C ) + E ) < +oo ) |
| 81 |
79 80
|
syl |
|- ( ph -> ( ( sum_ k e. U B + sum_ k e. W C ) + E ) < +oo ) |
| 82 |
76 78 81
|
xrltled |
|- ( ph -> ( ( sum_ k e. U B + sum_ k e. W C ) + E ) <_ +oo ) |
| 83 |
82
|
adantr |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) = +oo ) -> ( ( sum_ k e. U B + sum_ k e. W C ) + E ) <_ +oo ) |
| 84 |
|
oveq1 |
|- ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) = +oo -> ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e E ) = ( +oo +e E ) ) |
| 85 |
84
|
adantl |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) = +oo ) -> ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e E ) = ( +oo +e E ) ) |
| 86 |
53
|
renemnfd |
|- ( ph -> E =/= -oo ) |
| 87 |
|
xaddpnf2 |
|- ( ( E e. RR* /\ E =/= -oo ) -> ( +oo +e E ) = +oo ) |
| 88 |
46 86 87
|
syl2anc |
|- ( ph -> ( +oo +e E ) = +oo ) |
| 89 |
88
|
adantr |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) = +oo ) -> ( +oo +e E ) = +oo ) |
| 90 |
85 89
|
eqtr2d |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) = +oo ) -> +oo = ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e E ) ) |
| 91 |
83 90
|
breqtrd |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) = +oo ) -> ( ( sum_ k e. U B + sum_ k e. W C ) + E ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e E ) ) |
| 92 |
|
simpl |
|- ( ( ph /\ -. sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) = +oo ) -> ph ) |
| 93 |
92 11
|
syl |
|- ( ( ph /\ -. sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) = +oo ) -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. ( 0 [,] +oo ) ) |
| 94 |
|
neqne |
|- ( -. sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) = +oo -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) =/= +oo ) |
| 95 |
94
|
adantl |
|- ( ( ph /\ -. sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) = +oo ) -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) =/= +oo ) |
| 96 |
|
ge0xrre |
|- ( ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. ( 0 [,] +oo ) /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) =/= +oo ) -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR ) |
| 97 |
93 95 96
|
syl2anc |
|- ( ( ph /\ -. sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) = +oo ) -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR ) |
| 98 |
52 63
|
readdcld |
|- ( ph -> ( sum_ k e. U B + sum_ k e. W C ) e. RR ) |
| 99 |
98
|
adantr |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR ) -> ( sum_ k e. U B + sum_ k e. W C ) e. RR ) |
| 100 |
|
simpr |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR ) -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR ) |
| 101 |
53
|
adantr |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR ) -> E e. RR ) |
| 102 |
6 8
|
jca |
|- ( ph -> ( U e. Fin /\ W e. Fin ) ) |
| 103 |
|
unfi |
|- ( ( U e. Fin /\ W e. Fin ) -> ( U u. W ) e. Fin ) |
| 104 |
102 103
|
syl |
|- ( ph -> ( U u. W ) e. Fin ) |
| 105 |
|
simpl |
|- ( ( ph /\ k e. ( U u. W ) ) -> ph ) |
| 106 |
5 7
|
unssd |
|- ( ph -> ( U u. W ) C_ A ) |
| 107 |
106
|
adantr |
|- ( ( ph /\ k e. ( U u. W ) ) -> ( U u. W ) C_ A ) |
| 108 |
|
simpr |
|- ( ( ph /\ k e. ( U u. W ) ) -> k e. ( U u. W ) ) |
| 109 |
107 108
|
sseldd |
|- ( ( ph /\ k e. ( U u. W ) ) -> k e. A ) |
| 110 |
105 109 33
|
syl2anc |
|- ( ( ph /\ k e. ( U u. W ) ) -> B e. RR ) |
| 111 |
109 35
|
syldan |
|- ( ( ph /\ k e. ( U u. W ) ) -> C e. RR ) |
| 112 |
110 111
|
readdcld |
|- ( ( ph /\ k e. ( U u. W ) ) -> ( B + C ) e. RR ) |
| 113 |
104 112
|
fsumrecl |
|- ( ph -> sum_ k e. ( U u. W ) ( B + C ) e. RR ) |
| 114 |
113
|
adantr |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR ) -> sum_ k e. ( U u. W ) ( B + C ) e. RR ) |
| 115 |
104 110
|
fsumrecl |
|- ( ph -> sum_ k e. ( U u. W ) B e. RR ) |
| 116 |
104 111
|
fsumrecl |
|- ( ph -> sum_ k e. ( U u. W ) C e. RR ) |
| 117 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 118 |
117 2
|
sselid |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
| 119 |
|
xrge0ge0 |
|- ( B e. ( 0 [,] +oo ) -> 0 <_ B ) |
| 120 |
118 119
|
syl |
|- ( ( ph /\ k e. A ) -> 0 <_ B ) |
| 121 |
109 120
|
syldan |
|- ( ( ph /\ k e. ( U u. W ) ) -> 0 <_ B ) |
| 122 |
|
ssun1 |
|- U C_ ( U u. W ) |
| 123 |
122
|
a1i |
|- ( ph -> U C_ ( U u. W ) ) |
| 124 |
104 110 121 123
|
fsumless |
|- ( ph -> sum_ k e. U B <_ sum_ k e. ( U u. W ) B ) |
| 125 |
117 3
|
sselid |
|- ( ( ph /\ k e. A ) -> C e. ( 0 [,] +oo ) ) |
| 126 |
|
xrge0ge0 |
|- ( C e. ( 0 [,] +oo ) -> 0 <_ C ) |
| 127 |
125 126
|
syl |
|- ( ( ph /\ k e. A ) -> 0 <_ C ) |
| 128 |
109 127
|
syldan |
|- ( ( ph /\ k e. ( U u. W ) ) -> 0 <_ C ) |
| 129 |
|
ssun2 |
|- W C_ ( U u. W ) |
| 130 |
129
|
a1i |
|- ( ph -> W C_ ( U u. W ) ) |
| 131 |
104 111 128 130
|
fsumless |
|- ( ph -> sum_ k e. W C <_ sum_ k e. ( U u. W ) C ) |
| 132 |
52 63 115 116 124 131
|
leadd12dd |
|- ( ph -> ( sum_ k e. U B + sum_ k e. W C ) <_ ( sum_ k e. ( U u. W ) B + sum_ k e. ( U u. W ) C ) ) |
| 133 |
110
|
recnd |
|- ( ( ph /\ k e. ( U u. W ) ) -> B e. CC ) |
| 134 |
111
|
recnd |
|- ( ( ph /\ k e. ( U u. W ) ) -> C e. CC ) |
| 135 |
104 133 134
|
fsumadd |
|- ( ph -> sum_ k e. ( U u. W ) ( B + C ) = ( sum_ k e. ( U u. W ) B + sum_ k e. ( U u. W ) C ) ) |
| 136 |
135
|
eqcomd |
|- ( ph -> ( sum_ k e. ( U u. W ) B + sum_ k e. ( U u. W ) C ) = sum_ k e. ( U u. W ) ( B + C ) ) |
| 137 |
132 136
|
breqtrd |
|- ( ph -> ( sum_ k e. U B + sum_ k e. W C ) <_ sum_ k e. ( U u. W ) ( B + C ) ) |
| 138 |
137
|
adantr |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR ) -> ( sum_ k e. U B + sum_ k e. W C ) <_ sum_ k e. ( U u. W ) ( B + C ) ) |
| 139 |
43
|
adantr |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR ) -> ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) C_ RR* ) |
| 140 |
104 106
|
elpwd |
|- ( ph -> ( U u. W ) e. ~P A ) |
| 141 |
140 104
|
elind |
|- ( ph -> ( U u. W ) e. ( ~P A i^i Fin ) ) |
| 142 |
113
|
elexd |
|- ( ph -> sum_ k e. ( U u. W ) ( B + C ) e. _V ) |
| 143 |
|
sumeq1 |
|- ( x = ( U u. W ) -> sum_ k e. x ( B + C ) = sum_ k e. ( U u. W ) ( B + C ) ) |
| 144 |
41 143
|
elrnmpt1s |
|- ( ( ( U u. W ) e. ( ~P A i^i Fin ) /\ sum_ k e. ( U u. W ) ( B + C ) e. _V ) -> sum_ k e. ( U u. W ) ( B + C ) e. ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) ) |
| 145 |
141 142 144
|
syl2anc |
|- ( ph -> sum_ k e. ( U u. W ) ( B + C ) e. ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) ) |
| 146 |
145
|
adantr |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR ) -> sum_ k e. ( U u. W ) ( B + C ) e. ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) ) |
| 147 |
|
supxrub |
|- ( ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) C_ RR* /\ sum_ k e. ( U u. W ) ( B + C ) e. ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) ) -> sum_ k e. ( U u. W ) ( B + C ) <_ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) ) |
| 148 |
139 146 147
|
syl2anc |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR ) -> sum_ k e. ( U u. W ) ( B + C ) <_ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) ) |
| 149 |
99 114 100 138 148
|
letrd |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR ) -> ( sum_ k e. U B + sum_ k e. W C ) <_ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) ) |
| 150 |
99 100 101 149
|
leadd1dd |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR ) -> ( ( sum_ k e. U B + sum_ k e. W C ) + E ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) + E ) ) |
| 151 |
|
rexadd |
|- ( ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR /\ E e. RR ) -> ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e E ) = ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) + E ) ) |
| 152 |
100 101 151
|
syl2anc |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR ) -> ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e E ) = ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) + E ) ) |
| 153 |
152
|
eqcomd |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR ) -> ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) + E ) = ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e E ) ) |
| 154 |
150 153
|
breqtrd |
|- ( ( ph /\ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR ) -> ( ( sum_ k e. U B + sum_ k e. W C ) + E ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e E ) ) |
| 155 |
92 97 154
|
syl2anc |
|- ( ( ph /\ -. sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) = +oo ) -> ( ( sum_ k e. U B + sum_ k e. W C ) + E ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e E ) ) |
| 156 |
91 155
|
pm2.61dan |
|- ( ph -> ( ( sum_ k e. U B + sum_ k e. W C ) + E ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e E ) ) |
| 157 |
75 156
|
eqbrtrd |
|- ( ph -> ( ( sum_ k e. U B + ( E / 2 ) ) + ( sum_ k e. W C + ( E / 2 ) ) ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e E ) ) |
| 158 |
23 66 47 67 157
|
xrltletrd |
|- ( ph -> ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) < ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e E ) ) |
| 159 |
23 47 158
|
xrltled |
|- ( ph -> ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e E ) ) |