| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0xaddlem2.a |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | sge0xaddlem2.b |  |-  ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) ) | 
						
							| 3 |  | sge0xaddlem2.c |  |-  ( ( ph /\ k e. A ) -> C e. ( 0 [,) +oo ) ) | 
						
							| 4 |  | sge0xaddlem2.sb |  |-  ( ph -> ( sum^ ` ( k e. A |-> B ) ) e. RR ) | 
						
							| 5 |  | sge0xaddlem2.sc |  |-  ( ph -> ( sum^ ` ( k e. A |-> C ) ) e. RR ) | 
						
							| 6 |  | nfv |  |-  F/ k ph | 
						
							| 7 |  | 0xr |  |-  0 e. RR* | 
						
							| 8 | 7 | a1i |  |-  ( ( ph /\ k e. A ) -> 0 e. RR* ) | 
						
							| 9 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 10 | 9 | a1i |  |-  ( ( ph /\ k e. A ) -> +oo e. RR* ) | 
						
							| 11 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 12 | 11 2 | sselid |  |-  ( ( ph /\ k e. A ) -> B e. RR ) | 
						
							| 13 | 11 3 | sselid |  |-  ( ( ph /\ k e. A ) -> C e. RR ) | 
						
							| 14 | 12 13 | readdcld |  |-  ( ( ph /\ k e. A ) -> ( B + C ) e. RR ) | 
						
							| 15 | 14 | rexrd |  |-  ( ( ph /\ k e. A ) -> ( B + C ) e. RR* ) | 
						
							| 16 |  | icossicc |  |-  ( 0 [,) +oo ) C_ ( 0 [,] +oo ) | 
						
							| 17 | 16 2 | sselid |  |-  ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) | 
						
							| 18 |  | xrge0ge0 |  |-  ( B e. ( 0 [,] +oo ) -> 0 <_ B ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( ph /\ k e. A ) -> 0 <_ B ) | 
						
							| 20 | 16 3 | sselid |  |-  ( ( ph /\ k e. A ) -> C e. ( 0 [,] +oo ) ) | 
						
							| 21 |  | xrge0ge0 |  |-  ( C e. ( 0 [,] +oo ) -> 0 <_ C ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( ph /\ k e. A ) -> 0 <_ C ) | 
						
							| 23 | 12 13 19 22 | addge0d |  |-  ( ( ph /\ k e. A ) -> 0 <_ ( B + C ) ) | 
						
							| 24 | 14 | ltpnfd |  |-  ( ( ph /\ k e. A ) -> ( B + C ) < +oo ) | 
						
							| 25 | 8 10 15 23 24 | elicod |  |-  ( ( ph /\ k e. A ) -> ( B + C ) e. ( 0 [,) +oo ) ) | 
						
							| 26 | 6 1 25 | sge0revalmpt |  |-  ( ph -> ( sum^ ` ( k e. A |-> ( B + C ) ) ) = sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) ) | 
						
							| 27 |  | rexadd |  |-  ( ( B e. RR /\ C e. RR ) -> ( B +e C ) = ( B + C ) ) | 
						
							| 28 | 12 13 27 | syl2anc |  |-  ( ( ph /\ k e. A ) -> ( B +e C ) = ( B + C ) ) | 
						
							| 29 | 28 | mpteq2dva |  |-  ( ph -> ( k e. A |-> ( B +e C ) ) = ( k e. A |-> ( B + C ) ) ) | 
						
							| 30 | 29 | fveq2d |  |-  ( ph -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( sum^ ` ( k e. A |-> ( B + C ) ) ) ) | 
						
							| 31 |  | rexadd |  |-  ( ( ( sum^ ` ( k e. A |-> B ) ) e. RR /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) ) | 
						
							| 32 | 4 5 31 | syl2anc |  |-  ( ph -> ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) ) | 
						
							| 33 | 6 1 2 | sge0revalmpt |  |-  ( ph -> ( sum^ ` ( k e. A |-> B ) ) = sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) ) | 
						
							| 34 | 6 1 3 | sge0revalmpt |  |-  ( ph -> ( sum^ ` ( k e. A |-> C ) ) = sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) | 
						
							| 35 | 33 34 | oveq12d |  |-  ( ph -> ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) = ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) ) | 
						
							| 36 | 33 | eqcomd |  |-  ( ph -> sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) = ( sum^ ` ( k e. A |-> B ) ) ) | 
						
							| 37 | 36 4 | eqeltrd |  |-  ( ph -> sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) e. RR ) | 
						
							| 38 | 34 5 | eqeltrrd |  |-  ( ph -> sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) e. RR ) | 
						
							| 39 | 37 38 | readdcld |  |-  ( ph -> ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) e. RR ) | 
						
							| 40 | 39 | rexrd |  |-  ( ph -> ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) e. RR* ) | 
						
							| 41 |  | elinel2 |  |-  ( x e. ( ~P A i^i Fin ) -> x e. Fin ) | 
						
							| 42 | 41 | adantl |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> x e. Fin ) | 
						
							| 43 |  | simpll |  |-  ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> ph ) | 
						
							| 44 |  | elpwinss |  |-  ( x e. ( ~P A i^i Fin ) -> x C_ A ) | 
						
							| 45 | 44 | adantr |  |-  ( ( x e. ( ~P A i^i Fin ) /\ k e. x ) -> x C_ A ) | 
						
							| 46 |  | simpr |  |-  ( ( x e. ( ~P A i^i Fin ) /\ k e. x ) -> k e. x ) | 
						
							| 47 | 45 46 | sseldd |  |-  ( ( x e. ( ~P A i^i Fin ) /\ k e. x ) -> k e. A ) | 
						
							| 48 | 47 | adantll |  |-  ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> k e. A ) | 
						
							| 49 | 43 48 12 | syl2anc |  |-  ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> B e. RR ) | 
						
							| 50 | 43 48 13 | syl2anc |  |-  ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> C e. RR ) | 
						
							| 51 | 49 50 | readdcld |  |-  ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> ( B + C ) e. RR ) | 
						
							| 52 | 42 51 | fsumrecl |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ k e. x ( B + C ) e. RR ) | 
						
							| 53 | 52 | rexrd |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ k e. x ( B + C ) e. RR* ) | 
						
							| 54 | 53 | ralrimiva |  |-  ( ph -> A. x e. ( ~P A i^i Fin ) sum_ k e. x ( B + C ) e. RR* ) | 
						
							| 55 |  | eqid |  |-  ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) = ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) | 
						
							| 56 | 55 | rnmptss |  |-  ( A. x e. ( ~P A i^i Fin ) sum_ k e. x ( B + C ) e. RR* -> ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) C_ RR* ) | 
						
							| 57 | 54 56 | syl |  |-  ( ph -> ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) C_ RR* ) | 
						
							| 58 |  | supxrcl |  |-  ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) C_ RR* -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR* ) | 
						
							| 59 | 57 58 | syl |  |-  ( ph -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) e. RR* ) | 
						
							| 60 | 35 | eqcomd |  |-  ( ph -> ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) = ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) ) | 
						
							| 61 | 60 | adantr |  |-  ( ( ph /\ e e. RR+ ) -> ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) = ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) ) | 
						
							| 62 |  | nfv |  |-  F/ k ( ph /\ e e. RR+ ) | 
						
							| 63 | 1 | adantr |  |-  ( ( ph /\ e e. RR+ ) -> A e. V ) | 
						
							| 64 | 17 | adantlr |  |-  ( ( ( ph /\ e e. RR+ ) /\ k e. A ) -> B e. ( 0 [,] +oo ) ) | 
						
							| 65 |  | rphalfcl |  |-  ( e e. RR+ -> ( e / 2 ) e. RR+ ) | 
						
							| 66 | 65 | adantl |  |-  ( ( ph /\ e e. RR+ ) -> ( e / 2 ) e. RR+ ) | 
						
							| 67 | 4 | adantr |  |-  ( ( ph /\ e e. RR+ ) -> ( sum^ ` ( k e. A |-> B ) ) e. RR ) | 
						
							| 68 | 62 63 64 66 67 | sge0ltfirpmpt2 |  |-  ( ( ph /\ e e. RR+ ) -> E. u e. ( ~P A i^i Fin ) ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) | 
						
							| 69 | 20 | adantlr |  |-  ( ( ( ph /\ e e. RR+ ) /\ k e. A ) -> C e. ( 0 [,] +oo ) ) | 
						
							| 70 | 5 | adantr |  |-  ( ( ph /\ e e. RR+ ) -> ( sum^ ` ( k e. A |-> C ) ) e. RR ) | 
						
							| 71 | 62 63 69 66 70 | sge0ltfirpmpt2 |  |-  ( ( ph /\ e e. RR+ ) -> E. v e. ( ~P A i^i Fin ) ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) | 
						
							| 72 | 71 | 3ad2ant1 |  |-  ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) -> E. v e. ( ~P A i^i Fin ) ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) | 
						
							| 73 | 63 | 3ad2ant1 |  |-  ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) -> A e. V ) | 
						
							| 74 | 73 | 3ad2ant1 |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> A e. V ) | 
						
							| 75 |  | simpl1l |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ j e. A ) -> ph ) | 
						
							| 76 | 75 | 3ad2antl1 |  |-  ( ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) /\ j e. A ) -> ph ) | 
						
							| 77 |  | simpr |  |-  ( ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) /\ j e. A ) -> j e. A ) | 
						
							| 78 |  | nfv |  |-  F/ k ( ph /\ j e. A ) | 
						
							| 79 |  | nfcsb1v |  |-  F/_ k [_ j / k ]_ B | 
						
							| 80 | 79 | nfel1 |  |-  F/ k [_ j / k ]_ B e. ( 0 [,) +oo ) | 
						
							| 81 | 78 80 | nfim |  |-  F/ k ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. ( 0 [,) +oo ) ) | 
						
							| 82 |  | eleq1w |  |-  ( k = j -> ( k e. A <-> j e. A ) ) | 
						
							| 83 | 82 | anbi2d |  |-  ( k = j -> ( ( ph /\ k e. A ) <-> ( ph /\ j e. A ) ) ) | 
						
							| 84 |  | csbeq1a |  |-  ( k = j -> B = [_ j / k ]_ B ) | 
						
							| 85 | 84 | eleq1d |  |-  ( k = j -> ( B e. ( 0 [,) +oo ) <-> [_ j / k ]_ B e. ( 0 [,) +oo ) ) ) | 
						
							| 86 | 83 85 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) ) <-> ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. ( 0 [,) +oo ) ) ) ) | 
						
							| 87 | 81 86 2 | chvarfv |  |-  ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. ( 0 [,) +oo ) ) | 
						
							| 88 | 76 77 87 | syl2anc |  |-  ( ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) /\ j e. A ) -> [_ j / k ]_ B e. ( 0 [,) +oo ) ) | 
						
							| 89 |  | nfcsb1v |  |-  F/_ k [_ j / k ]_ C | 
						
							| 90 | 89 | nfel1 |  |-  F/ k [_ j / k ]_ C e. ( 0 [,) +oo ) | 
						
							| 91 | 78 90 | nfim |  |-  F/ k ( ( ph /\ j e. A ) -> [_ j / k ]_ C e. ( 0 [,) +oo ) ) | 
						
							| 92 |  | csbeq1a |  |-  ( k = j -> C = [_ j / k ]_ C ) | 
						
							| 93 | 92 | eleq1d |  |-  ( k = j -> ( C e. ( 0 [,) +oo ) <-> [_ j / k ]_ C e. ( 0 [,) +oo ) ) ) | 
						
							| 94 | 83 93 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. A ) -> C e. ( 0 [,) +oo ) ) <-> ( ( ph /\ j e. A ) -> [_ j / k ]_ C e. ( 0 [,) +oo ) ) ) ) | 
						
							| 95 | 91 94 3 | chvarfv |  |-  ( ( ph /\ j e. A ) -> [_ j / k ]_ C e. ( 0 [,) +oo ) ) | 
						
							| 96 | 76 77 95 | syl2anc |  |-  ( ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) /\ j e. A ) -> [_ j / k ]_ C e. ( 0 [,) +oo ) ) | 
						
							| 97 |  | simp11r |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> e e. RR+ ) | 
						
							| 98 |  | simp12 |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> u e. ( ~P A i^i Fin ) ) | 
						
							| 99 |  | elpwinss |  |-  ( u e. ( ~P A i^i Fin ) -> u C_ A ) | 
						
							| 100 | 98 99 | syl |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> u C_ A ) | 
						
							| 101 |  | elinel2 |  |-  ( u e. ( ~P A i^i Fin ) -> u e. Fin ) | 
						
							| 102 | 101 | 3ad2ant2 |  |-  ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) -> u e. Fin ) | 
						
							| 103 | 102 | 3ad2ant1 |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> u e. Fin ) | 
						
							| 104 |  | simp2 |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> v e. ( ~P A i^i Fin ) ) | 
						
							| 105 |  | elpwinss |  |-  ( v e. ( ~P A i^i Fin ) -> v C_ A ) | 
						
							| 106 | 104 105 | syl |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> v C_ A ) | 
						
							| 107 |  | elinel2 |  |-  ( v e. ( ~P A i^i Fin ) -> v e. Fin ) | 
						
							| 108 | 107 | 3ad2ant2 |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> v e. Fin ) | 
						
							| 109 |  | simp13 |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) | 
						
							| 110 |  | nfcv |  |-  F/_ j B | 
						
							| 111 | 110 79 84 | cbvmpt |  |-  ( k e. A |-> B ) = ( j e. A |-> [_ j / k ]_ B ) | 
						
							| 112 | 111 | fveq2i |  |-  ( sum^ ` ( k e. A |-> B ) ) = ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) | 
						
							| 113 | 84 110 79 | cbvsum |  |-  sum_ k e. u B = sum_ j e. u [_ j / k ]_ B | 
						
							| 114 | 113 | oveq1i |  |-  ( sum_ k e. u B + ( e / 2 ) ) = ( sum_ j e. u [_ j / k ]_ B + ( e / 2 ) ) | 
						
							| 115 | 112 114 | breq12i |  |-  ( ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) <-> ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) < ( sum_ j e. u [_ j / k ]_ B + ( e / 2 ) ) ) | 
						
							| 116 | 115 | biimpi |  |-  ( ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) -> ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) < ( sum_ j e. u [_ j / k ]_ B + ( e / 2 ) ) ) | 
						
							| 117 | 109 116 | syl |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) < ( sum_ j e. u [_ j / k ]_ B + ( e / 2 ) ) ) | 
						
							| 118 |  | simp3 |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) | 
						
							| 119 |  | nfcv |  |-  F/_ j C | 
						
							| 120 | 119 89 92 | cbvmpt |  |-  ( k e. A |-> C ) = ( j e. A |-> [_ j / k ]_ C ) | 
						
							| 121 | 120 | fveq2i |  |-  ( sum^ ` ( k e. A |-> C ) ) = ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) | 
						
							| 122 | 92 119 89 | cbvsum |  |-  sum_ k e. v C = sum_ j e. v [_ j / k ]_ C | 
						
							| 123 | 122 | oveq1i |  |-  ( sum_ k e. v C + ( e / 2 ) ) = ( sum_ j e. v [_ j / k ]_ C + ( e / 2 ) ) | 
						
							| 124 | 121 123 | breq12i |  |-  ( ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) <-> ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) < ( sum_ j e. v [_ j / k ]_ C + ( e / 2 ) ) ) | 
						
							| 125 | 124 | biimpi |  |-  ( ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) -> ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) < ( sum_ j e. v [_ j / k ]_ C + ( e / 2 ) ) ) | 
						
							| 126 | 118 125 | syl |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) < ( sum_ j e. v [_ j / k ]_ C + ( e / 2 ) ) ) | 
						
							| 127 |  | simp11l |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> ph ) | 
						
							| 128 | 84 92 | oveq12d |  |-  ( k = j -> ( B + C ) = ( [_ j / k ]_ B + [_ j / k ]_ C ) ) | 
						
							| 129 |  | nfcv |  |-  F/_ j ( B + C ) | 
						
							| 130 |  | nfcv |  |-  F/_ k + | 
						
							| 131 | 79 130 89 | nfov |  |-  F/_ k ( [_ j / k ]_ B + [_ j / k ]_ C ) | 
						
							| 132 | 128 129 131 | cbvsum |  |-  sum_ k e. x ( B + C ) = sum_ j e. x ( [_ j / k ]_ B + [_ j / k ]_ C ) | 
						
							| 133 | 132 | mpteq2i |  |-  ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) = ( x e. ( ~P A i^i Fin ) |-> sum_ j e. x ( [_ j / k ]_ B + [_ j / k ]_ C ) ) | 
						
							| 134 | 133 | rneqi |  |-  ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) = ran ( x e. ( ~P A i^i Fin ) |-> sum_ j e. x ( [_ j / k ]_ B + [_ j / k ]_ C ) ) | 
						
							| 135 | 134 | supeq1i |  |-  sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) = sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ j e. x ( [_ j / k ]_ B + [_ j / k ]_ C ) ) , RR* , < ) | 
						
							| 136 | 135 | eqcomi |  |-  sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ j e. x ( [_ j / k ]_ B + [_ j / k ]_ C ) ) , RR* , < ) = sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) | 
						
							| 137 | 136 | a1i |  |-  ( ph -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ j e. x ( [_ j / k ]_ B + [_ j / k ]_ C ) ) , RR* , < ) = sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) ) | 
						
							| 138 | 137 26 | eqtr4d |  |-  ( ph -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ j e. x ( [_ j / k ]_ B + [_ j / k ]_ C ) ) , RR* , < ) = ( sum^ ` ( k e. A |-> ( B + C ) ) ) ) | 
						
							| 139 |  | ge0xaddcl |  |-  ( ( B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( B +e C ) e. ( 0 [,] +oo ) ) | 
						
							| 140 | 17 20 139 | syl2anc |  |-  ( ( ph /\ k e. A ) -> ( B +e C ) e. ( 0 [,] +oo ) ) | 
						
							| 141 | 28 140 | eqeltrrd |  |-  ( ( ph /\ k e. A ) -> ( B + C ) e. ( 0 [,] +oo ) ) | 
						
							| 142 | 6 1 141 | sge0clmpt |  |-  ( ph -> ( sum^ ` ( k e. A |-> ( B + C ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 143 | 138 142 | eqeltrd |  |-  ( ph -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ j e. x ( [_ j / k ]_ B + [_ j / k ]_ C ) ) , RR* , < ) e. ( 0 [,] +oo ) ) | 
						
							| 144 | 127 143 | syl |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ j e. x ( [_ j / k ]_ B + [_ j / k ]_ C ) ) , RR* , < ) e. ( 0 [,] +oo ) ) | 
						
							| 145 | 112 4 | eqeltrrid |  |-  ( ph -> ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) e. RR ) | 
						
							| 146 | 127 145 | syl |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) e. RR ) | 
						
							| 147 | 121 5 | eqeltrrid |  |-  ( ph -> ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) e. RR ) | 
						
							| 148 | 127 147 | syl |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) e. RR ) | 
						
							| 149 | 74 88 96 97 100 103 106 108 117 126 144 146 148 | sge0xaddlem1 |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> ( ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) + ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ j e. x ( [_ j / k ]_ B + [_ j / k ]_ C ) ) , RR* , < ) +e e ) ) | 
						
							| 150 | 112 121 | oveq12i |  |-  ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) = ( ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) + ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) ) | 
						
							| 151 | 135 | oveq1i |  |-  ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e e ) = ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ j e. x ( [_ j / k ]_ B + [_ j / k ]_ C ) ) , RR* , < ) +e e ) | 
						
							| 152 | 150 151 | breq12i |  |-  ( ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e e ) <-> ( ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) + ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ j e. x ( [_ j / k ]_ B + [_ j / k ]_ C ) ) , RR* , < ) +e e ) ) | 
						
							| 153 | 149 152 | sylibr |  |-  ( ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) /\ v e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) ) -> ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e e ) ) | 
						
							| 154 | 153 | 3exp |  |-  ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) -> ( v e. ( ~P A i^i Fin ) -> ( ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) -> ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e e ) ) ) ) | 
						
							| 155 | 154 | rexlimdv |  |-  ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) -> ( E. v e. ( ~P A i^i Fin ) ( sum^ ` ( k e. A |-> C ) ) < ( sum_ k e. v C + ( e / 2 ) ) -> ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e e ) ) ) | 
						
							| 156 | 72 155 | mpd |  |-  ( ( ( ph /\ e e. RR+ ) /\ u e. ( ~P A i^i Fin ) /\ ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) ) -> ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e e ) ) | 
						
							| 157 | 156 | 3exp |  |-  ( ( ph /\ e e. RR+ ) -> ( u e. ( ~P A i^i Fin ) -> ( ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) -> ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e e ) ) ) ) | 
						
							| 158 | 157 | rexlimdv |  |-  ( ( ph /\ e e. RR+ ) -> ( E. u e. ( ~P A i^i Fin ) ( sum^ ` ( k e. A |-> B ) ) < ( sum_ k e. u B + ( e / 2 ) ) -> ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e e ) ) ) | 
						
							| 159 | 68 158 | mpd |  |-  ( ( ph /\ e e. RR+ ) -> ( ( sum^ ` ( k e. A |-> B ) ) + ( sum^ ` ( k e. A |-> C ) ) ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e e ) ) | 
						
							| 160 | 61 159 | eqbrtrd |  |-  ( ( ph /\ e e. RR+ ) -> ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) <_ ( sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) +e e ) ) | 
						
							| 161 | 40 59 160 | xrlexaddrp |  |-  ( ph -> ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) <_ sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) ) | 
						
							| 162 | 26 | eqcomd |  |-  ( ph -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) = ( sum^ ` ( k e. A |-> ( B + C ) ) ) ) | 
						
							| 163 | 43 48 25 | syl2anc |  |-  ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> ( B + C ) e. ( 0 [,) +oo ) ) | 
						
							| 164 | 42 163 | sge0fsummpt |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( sum^ ` ( k e. x |-> ( B + C ) ) ) = sum_ k e. x ( B + C ) ) | 
						
							| 165 | 49 | recnd |  |-  ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> B e. CC ) | 
						
							| 166 | 50 | recnd |  |-  ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> C e. CC ) | 
						
							| 167 | 42 165 166 | fsumadd |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ k e. x ( B + C ) = ( sum_ k e. x B + sum_ k e. x C ) ) | 
						
							| 168 | 164 167 | eqtrd |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( sum^ ` ( k e. x |-> ( B + C ) ) ) = ( sum_ k e. x B + sum_ k e. x C ) ) | 
						
							| 169 | 42 49 | fsumrecl |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ k e. x B e. RR ) | 
						
							| 170 | 42 50 | fsumrecl |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ k e. x C e. RR ) | 
						
							| 171 | 37 | adantr |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) e. RR ) | 
						
							| 172 | 38 | adantr |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) e. RR ) | 
						
							| 173 |  | elinel2 |  |-  ( y e. ( ~P A i^i Fin ) -> y e. Fin ) | 
						
							| 174 | 173 | adantl |  |-  ( ( ph /\ y e. ( ~P A i^i Fin ) ) -> y e. Fin ) | 
						
							| 175 |  | simpll |  |-  ( ( ( ph /\ y e. ( ~P A i^i Fin ) ) /\ k e. y ) -> ph ) | 
						
							| 176 |  | elpwinss |  |-  ( y e. ( ~P A i^i Fin ) -> y C_ A ) | 
						
							| 177 | 176 | adantr |  |-  ( ( y e. ( ~P A i^i Fin ) /\ k e. y ) -> y C_ A ) | 
						
							| 178 |  | simpr |  |-  ( ( y e. ( ~P A i^i Fin ) /\ k e. y ) -> k e. y ) | 
						
							| 179 | 177 178 | sseldd |  |-  ( ( y e. ( ~P A i^i Fin ) /\ k e. y ) -> k e. A ) | 
						
							| 180 | 179 | adantll |  |-  ( ( ( ph /\ y e. ( ~P A i^i Fin ) ) /\ k e. y ) -> k e. A ) | 
						
							| 181 | 175 180 12 | syl2anc |  |-  ( ( ( ph /\ y e. ( ~P A i^i Fin ) ) /\ k e. y ) -> B e. RR ) | 
						
							| 182 | 174 181 | fsumrecl |  |-  ( ( ph /\ y e. ( ~P A i^i Fin ) ) -> sum_ k e. y B e. RR ) | 
						
							| 183 | 182 | rexrd |  |-  ( ( ph /\ y e. ( ~P A i^i Fin ) ) -> sum_ k e. y B e. RR* ) | 
						
							| 184 | 183 | ralrimiva |  |-  ( ph -> A. y e. ( ~P A i^i Fin ) sum_ k e. y B e. RR* ) | 
						
							| 185 |  | eqid |  |-  ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) = ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) | 
						
							| 186 | 185 | rnmptss |  |-  ( A. y e. ( ~P A i^i Fin ) sum_ k e. y B e. RR* -> ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) C_ RR* ) | 
						
							| 187 | 184 186 | syl |  |-  ( ph -> ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) C_ RR* ) | 
						
							| 188 | 187 | adantr |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) C_ RR* ) | 
						
							| 189 |  | simpr |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> x e. ( ~P A i^i Fin ) ) | 
						
							| 190 |  | eqidd |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ k e. x B = sum_ k e. x B ) | 
						
							| 191 |  | sumeq1 |  |-  ( y = x -> sum_ k e. y B = sum_ k e. x B ) | 
						
							| 192 | 191 | rspceeqv |  |-  ( ( x e. ( ~P A i^i Fin ) /\ sum_ k e. x B = sum_ k e. x B ) -> E. y e. ( ~P A i^i Fin ) sum_ k e. x B = sum_ k e. y B ) | 
						
							| 193 | 189 190 192 | syl2anc |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> E. y e. ( ~P A i^i Fin ) sum_ k e. x B = sum_ k e. y B ) | 
						
							| 194 | 169 | elexd |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ k e. x B e. _V ) | 
						
							| 195 | 185 193 194 | elrnmptd |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ k e. x B e. ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) ) | 
						
							| 196 |  | supxrub |  |-  ( ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) C_ RR* /\ sum_ k e. x B e. ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) ) -> sum_ k e. x B <_ sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) ) | 
						
							| 197 | 188 195 196 | syl2anc |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ k e. x B <_ sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) ) | 
						
							| 198 |  | nfv |  |-  F/ z ph | 
						
							| 199 |  | eqid |  |-  ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) = ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) | 
						
							| 200 |  | elinel2 |  |-  ( z e. ( ~P A i^i Fin ) -> z e. Fin ) | 
						
							| 201 | 200 | adantl |  |-  ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> z e. Fin ) | 
						
							| 202 |  | simpll |  |-  ( ( ( ph /\ z e. ( ~P A i^i Fin ) ) /\ k e. z ) -> ph ) | 
						
							| 203 |  | elpwinss |  |-  ( z e. ( ~P A i^i Fin ) -> z C_ A ) | 
						
							| 204 | 203 | adantr |  |-  ( ( z e. ( ~P A i^i Fin ) /\ k e. z ) -> z C_ A ) | 
						
							| 205 |  | simpr |  |-  ( ( z e. ( ~P A i^i Fin ) /\ k e. z ) -> k e. z ) | 
						
							| 206 | 204 205 | sseldd |  |-  ( ( z e. ( ~P A i^i Fin ) /\ k e. z ) -> k e. A ) | 
						
							| 207 | 206 | adantll |  |-  ( ( ( ph /\ z e. ( ~P A i^i Fin ) ) /\ k e. z ) -> k e. A ) | 
						
							| 208 | 202 207 13 | syl2anc |  |-  ( ( ( ph /\ z e. ( ~P A i^i Fin ) ) /\ k e. z ) -> C e. RR ) | 
						
							| 209 | 201 208 | fsumrecl |  |-  ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> sum_ k e. z C e. RR ) | 
						
							| 210 | 209 | rexrd |  |-  ( ( ph /\ z e. ( ~P A i^i Fin ) ) -> sum_ k e. z C e. RR* ) | 
						
							| 211 | 198 199 210 | rnmptssd |  |-  ( ph -> ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) C_ RR* ) | 
						
							| 212 | 211 | adantr |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) C_ RR* ) | 
						
							| 213 |  | eqidd |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ k e. x C = sum_ k e. x C ) | 
						
							| 214 |  | sumeq1 |  |-  ( z = x -> sum_ k e. z C = sum_ k e. x C ) | 
						
							| 215 | 214 | rspceeqv |  |-  ( ( x e. ( ~P A i^i Fin ) /\ sum_ k e. x C = sum_ k e. x C ) -> E. z e. ( ~P A i^i Fin ) sum_ k e. x C = sum_ k e. z C ) | 
						
							| 216 | 189 213 215 | syl2anc |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> E. z e. ( ~P A i^i Fin ) sum_ k e. x C = sum_ k e. z C ) | 
						
							| 217 | 170 | elexd |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ k e. x C e. _V ) | 
						
							| 218 | 199 216 217 | elrnmptd |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ k e. x C e. ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) ) | 
						
							| 219 |  | supxrub |  |-  ( ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) C_ RR* /\ sum_ k e. x C e. ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) ) -> sum_ k e. x C <_ sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) | 
						
							| 220 | 212 218 219 | syl2anc |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> sum_ k e. x C <_ sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) | 
						
							| 221 | 169 170 171 172 197 220 | le2addd |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( sum_ k e. x B + sum_ k e. x C ) <_ ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) ) | 
						
							| 222 | 168 221 | eqbrtrd |  |-  ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( sum^ ` ( k e. x |-> ( B + C ) ) ) <_ ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) ) | 
						
							| 223 | 222 | ralrimiva |  |-  ( ph -> A. x e. ( ~P A i^i Fin ) ( sum^ ` ( k e. x |-> ( B + C ) ) ) <_ ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) ) | 
						
							| 224 | 6 1 141 40 | sge0lefimpt |  |-  ( ph -> ( ( sum^ ` ( k e. A |-> ( B + C ) ) ) <_ ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) <-> A. x e. ( ~P A i^i Fin ) ( sum^ ` ( k e. x |-> ( B + C ) ) ) <_ ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) ) ) | 
						
							| 225 | 223 224 | mpbird |  |-  ( ph -> ( sum^ ` ( k e. A |-> ( B + C ) ) ) <_ ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) ) | 
						
							| 226 | 162 225 | eqbrtrd |  |-  ( ph -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) <_ ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) ) | 
						
							| 227 | 40 59 161 226 | xrletrid |  |-  ( ph -> ( sup ( ran ( y e. ( ~P A i^i Fin ) |-> sum_ k e. y B ) , RR* , < ) + sup ( ran ( z e. ( ~P A i^i Fin ) |-> sum_ k e. z C ) , RR* , < ) ) = sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) ) | 
						
							| 228 | 32 35 227 | 3eqtrd |  |-  ( ph -> ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) = sup ( ran ( x e. ( ~P A i^i Fin ) |-> sum_ k e. x ( B + C ) ) , RR* , < ) ) | 
						
							| 229 | 26 30 228 | 3eqtr4d |  |-  ( ph -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) ) |