| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0xaddlem2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
sge0xaddlem2.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 3 |
|
sge0xaddlem2.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 4 |
|
sge0xaddlem2.sb |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ℝ ) |
| 5 |
|
sge0xaddlem2.sc |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ∈ ℝ ) |
| 6 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 7 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 8 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ ℝ* ) |
| 9 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → +∞ ∈ ℝ* ) |
| 11 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 12 |
11 2
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 13 |
11 3
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 14 |
12 13
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 15 |
14
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ ℝ* ) |
| 16 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 17 |
16 2
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 18 |
|
xrge0ge0 |
⊢ ( 𝐵 ∈ ( 0 [,] +∞ ) → 0 ≤ 𝐵 ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
| 20 |
16 3
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 21 |
|
xrge0ge0 |
⊢ ( 𝐶 ∈ ( 0 [,] +∞ ) → 0 ≤ 𝐶 ) |
| 22 |
20 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐶 ) |
| 23 |
12 13 19 22
|
addge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ ( 𝐵 + 𝐶 ) ) |
| 24 |
14
|
ltpnfd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) < +∞ ) |
| 25 |
8 10 15 23 24
|
elicod |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ ( 0 [,) +∞ ) ) |
| 26 |
6 1 25
|
sge0revalmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ) |
| 27 |
|
rexadd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 +𝑒 𝐶 ) = ( 𝐵 + 𝐶 ) ) |
| 28 |
12 13 27
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 +𝑒 𝐶 ) = ( 𝐵 + 𝐶 ) ) |
| 29 |
28
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 +𝑒 𝐶 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) |
| 30 |
29
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 +𝑒 𝐶 ) ) ) = ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) ) |
| 31 |
|
rexadd |
⊢ ( ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ℝ ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ∈ ℝ ) → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) +𝑒 ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) = ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) ) |
| 32 |
4 5 31
|
syl2anc |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) +𝑒 ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) = ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) ) |
| 33 |
6 1 2
|
sge0revalmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) ) |
| 34 |
6 1 3
|
sge0revalmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) = sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) |
| 35 |
33 34
|
oveq12d |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) = ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) ) |
| 36 |
33
|
eqcomd |
⊢ ( 𝜑 → sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) = ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 37 |
36 4
|
eqeltrd |
⊢ ( 𝜑 → sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) ∈ ℝ ) |
| 38 |
34 5
|
eqeltrrd |
⊢ ( 𝜑 → sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ∈ ℝ ) |
| 39 |
37 38
|
readdcld |
⊢ ( 𝜑 → ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) ∈ ℝ ) |
| 40 |
39
|
rexrd |
⊢ ( 𝜑 → ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) ∈ ℝ* ) |
| 41 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ∈ Fin ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑥 ∈ Fin ) |
| 43 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝜑 ) |
| 44 |
|
elpwinss |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ⊆ 𝐴 ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑘 ∈ 𝑥 ) → 𝑥 ⊆ 𝐴 ) |
| 46 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝑥 ) |
| 47 |
45 46
|
sseldd |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝐴 ) |
| 48 |
47
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝐴 ) |
| 49 |
43 48 12
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝐵 ∈ ℝ ) |
| 50 |
43 48 13
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝐶 ∈ ℝ ) |
| 51 |
49 50
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 52 |
42 51
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 53 |
52
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ∈ ℝ* ) |
| 54 |
53
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ∈ ℝ* ) |
| 55 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) = ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) |
| 56 |
55
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ∈ ℝ* → ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) ⊆ ℝ* ) |
| 57 |
54 56
|
syl |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) ⊆ ℝ* ) |
| 58 |
|
supxrcl |
⊢ ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) ⊆ ℝ* → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ* ) |
| 59 |
57 58
|
syl |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ* ) |
| 60 |
35
|
eqcomd |
⊢ ( 𝜑 → ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) = ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) ) |
| 61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) = ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) ) |
| 62 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) |
| 63 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → 𝐴 ∈ 𝑉 ) |
| 64 |
17
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 65 |
|
rphalfcl |
⊢ ( 𝑒 ∈ ℝ+ → ( 𝑒 / 2 ) ∈ ℝ+ ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( 𝑒 / 2 ) ∈ ℝ+ ) |
| 67 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ℝ ) |
| 68 |
62 63 64 66 67
|
sge0ltfirpmpt2 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ∃ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) |
| 69 |
20
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 70 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ∈ ℝ ) |
| 71 |
62 63 69 66 70
|
sge0ltfirpmpt2 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ∃ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) |
| 72 |
71
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) |
| 73 |
63
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 74 |
73
|
3ad2ant1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 75 |
|
simpl1l |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑗 ∈ 𝐴 ) → 𝜑 ) |
| 76 |
75
|
3ad2antl1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) ∧ 𝑗 ∈ 𝐴 ) → 𝜑 ) |
| 77 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ 𝐴 ) |
| 78 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) |
| 79 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 80 |
79
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) |
| 81 |
78 80
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 82 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴 ) ) |
| 83 |
82
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ) ) |
| 84 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 85 |
84
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) ) |
| 86 |
83 85
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) ) ) |
| 87 |
81 86 2
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 88 |
76 77 87
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 89 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 |
| 90 |
89
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,) +∞ ) |
| 91 |
78 90
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 92 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐶 = ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 93 |
92
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐶 ∈ ( 0 [,) +∞ ) ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,) +∞ ) ) ) |
| 94 |
83 93
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,) +∞ ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,) +∞ ) ) ) ) |
| 95 |
91 94 3
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 96 |
76 77 95
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 97 |
|
simp11r |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → 𝑒 ∈ ℝ+ ) |
| 98 |
|
simp12 |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 99 |
|
elpwinss |
⊢ ( 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑢 ⊆ 𝐴 ) |
| 100 |
98 99
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → 𝑢 ⊆ 𝐴 ) |
| 101 |
|
elinel2 |
⊢ ( 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑢 ∈ Fin ) |
| 102 |
101
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) → 𝑢 ∈ Fin ) |
| 103 |
102
|
3ad2ant1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → 𝑢 ∈ Fin ) |
| 104 |
|
simp2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 105 |
|
elpwinss |
⊢ ( 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑣 ⊆ 𝐴 ) |
| 106 |
104 105
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → 𝑣 ⊆ 𝐴 ) |
| 107 |
|
elinel2 |
⊢ ( 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑣 ∈ Fin ) |
| 108 |
107
|
3ad2ant2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → 𝑣 ∈ Fin ) |
| 109 |
|
simp13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) |
| 110 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐵 |
| 111 |
110 79 84
|
cbvmpt |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 112 |
111
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) |
| 113 |
84 110 79
|
cbvsum |
⊢ Σ 𝑘 ∈ 𝑢 𝐵 = Σ 𝑗 ∈ 𝑢 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 114 |
113
|
oveq1i |
⊢ ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) = ( Σ 𝑗 ∈ 𝑢 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ( 𝑒 / 2 ) ) |
| 115 |
112 114
|
breq12i |
⊢ ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ↔ ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) < ( Σ 𝑗 ∈ 𝑢 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ( 𝑒 / 2 ) ) ) |
| 116 |
115
|
biimpi |
⊢ ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) → ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) < ( Σ 𝑗 ∈ 𝑢 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ( 𝑒 / 2 ) ) ) |
| 117 |
109 116
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) < ( Σ 𝑗 ∈ 𝑢 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ( 𝑒 / 2 ) ) ) |
| 118 |
|
simp3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) |
| 119 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐶 |
| 120 |
119 89 92
|
cbvmpt |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 121 |
120
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) = ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
| 122 |
92 119 89
|
cbvsum |
⊢ Σ 𝑘 ∈ 𝑣 𝐶 = Σ 𝑗 ∈ 𝑣 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 |
| 123 |
122
|
oveq1i |
⊢ ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) = ( Σ 𝑗 ∈ 𝑣 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 + ( 𝑒 / 2 ) ) |
| 124 |
121 123
|
breq12i |
⊢ ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ↔ ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) < ( Σ 𝑗 ∈ 𝑣 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 + ( 𝑒 / 2 ) ) ) |
| 125 |
124
|
biimpi |
⊢ ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) → ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) < ( Σ 𝑗 ∈ 𝑣 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 + ( 𝑒 / 2 ) ) ) |
| 126 |
118 125
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) < ( Σ 𝑗 ∈ 𝑣 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 + ( 𝑒 / 2 ) ) ) |
| 127 |
|
simp11l |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → 𝜑 ) |
| 128 |
84 92
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 + 𝐶 ) = ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
| 129 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝐵 + 𝐶 ) |
| 130 |
|
nfcv |
⊢ Ⅎ 𝑘 + |
| 131 |
79 130 89
|
nfov |
⊢ Ⅎ 𝑘 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 132 |
128 129 131
|
cbvsum |
⊢ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) = Σ 𝑗 ∈ 𝑥 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 133 |
132
|
mpteq2i |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) = ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑗 ∈ 𝑥 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
| 134 |
133
|
rneqi |
⊢ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) = ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑗 ∈ 𝑥 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
| 135 |
134
|
supeq1i |
⊢ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑗 ∈ 𝑥 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) , ℝ* , < ) |
| 136 |
135
|
eqcomi |
⊢ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑗 ∈ 𝑥 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) |
| 137 |
136
|
a1i |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑗 ∈ 𝑥 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ) |
| 138 |
137 26
|
eqtr4d |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑗 ∈ 𝑥 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) , ℝ* , < ) = ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) ) |
| 139 |
|
ge0xaddcl |
⊢ ( ( 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐵 +𝑒 𝐶 ) ∈ ( 0 [,] +∞ ) ) |
| 140 |
17 20 139
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 +𝑒 𝐶 ) ∈ ( 0 [,] +∞ ) ) |
| 141 |
28 140
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ ( 0 [,] +∞ ) ) |
| 142 |
6 1 141
|
sge0clmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 143 |
138 142
|
eqeltrd |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑗 ∈ 𝑥 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 144 |
127 143
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑗 ∈ 𝑥 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 145 |
112 4
|
eqeltrrid |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) ∈ ℝ ) |
| 146 |
127 145
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) ∈ ℝ ) |
| 147 |
121 5
|
eqeltrrid |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ∈ ℝ ) |
| 148 |
127 147
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ∈ ℝ ) |
| 149 |
74 88 96 97 100 103 106 108 117 126 144 146 148
|
sge0xaddlem1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → ( ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) + ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑗 ∈ 𝑥 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) , ℝ* , < ) +𝑒 𝑒 ) ) |
| 150 |
112 121
|
oveq12i |
⊢ ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) = ( ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) + ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) |
| 151 |
135
|
oveq1i |
⊢ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝑒 ) = ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑗 ∈ 𝑥 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) , ℝ* , < ) +𝑒 𝑒 ) |
| 152 |
150 151
|
breq12i |
⊢ ( ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝑒 ) ↔ ( ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) + ( Σ^ ‘ ( 𝑗 ∈ 𝐴 ↦ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑗 ∈ 𝑥 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 + ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) , ℝ* , < ) +𝑒 𝑒 ) ) |
| 153 |
149 152
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) ∧ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) ) → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝑒 ) ) |
| 154 |
153
|
3exp |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) → ( 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝑒 ) ) ) ) |
| 155 |
154
|
rexlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) → ( ∃ 𝑣 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑣 𝐶 + ( 𝑒 / 2 ) ) → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝑒 ) ) ) |
| 156 |
72 155
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) ) → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝑒 ) ) |
| 157 |
156
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝑒 ) ) ) ) |
| 158 |
157
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( ∃ 𝑢 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑢 𝐵 + ( 𝑒 / 2 ) ) → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝑒 ) ) ) |
| 159 |
68 158
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝑒 ) ) |
| 160 |
61 159
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝑒 ) ) |
| 161 |
40 59 160
|
xrlexaddrp |
⊢ ( 𝜑 → ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ) |
| 162 |
26
|
eqcomd |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) = ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) ) |
| 163 |
43 48 25
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → ( 𝐵 + 𝐶 ) ∈ ( 0 [,) +∞ ) ) |
| 164 |
42 163
|
sge0fsummpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑘 ∈ 𝑥 ↦ ( 𝐵 + 𝐶 ) ) ) = Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) |
| 165 |
49
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝐵 ∈ ℂ ) |
| 166 |
50
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝐶 ∈ ℂ ) |
| 167 |
42 165 166
|
fsumadd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) = ( Σ 𝑘 ∈ 𝑥 𝐵 + Σ 𝑘 ∈ 𝑥 𝐶 ) ) |
| 168 |
164 167
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑘 ∈ 𝑥 ↦ ( 𝐵 + 𝐶 ) ) ) = ( Σ 𝑘 ∈ 𝑥 𝐵 + Σ 𝑘 ∈ 𝑥 𝐶 ) ) |
| 169 |
42 49
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 𝐵 ∈ ℝ ) |
| 170 |
42 50
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 𝐶 ∈ ℝ ) |
| 171 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) ∈ ℝ ) |
| 172 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ∈ ℝ ) |
| 173 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ∈ Fin ) |
| 174 |
173
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ∈ Fin ) |
| 175 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝜑 ) |
| 176 |
|
elpwinss |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ⊆ 𝐴 ) |
| 177 |
176
|
adantr |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑘 ∈ 𝑦 ) → 𝑦 ⊆ 𝐴 ) |
| 178 |
|
simpr |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝑦 ) |
| 179 |
177 178
|
sseldd |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝐴 ) |
| 180 |
179
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝐴 ) |
| 181 |
175 180 12
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℝ ) |
| 182 |
174 181
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℝ ) |
| 183 |
182
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℝ* ) |
| 184 |
183
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℝ* ) |
| 185 |
|
eqid |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) = ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) |
| 186 |
185
|
rnmptss |
⊢ ( ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) Σ 𝑘 ∈ 𝑦 𝐵 ∈ ℝ* → ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ⊆ ℝ* ) |
| 187 |
184 186
|
syl |
⊢ ( 𝜑 → ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ⊆ ℝ* ) |
| 188 |
187
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ⊆ ℝ* ) |
| 189 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 190 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ 𝑥 𝐵 ) |
| 191 |
|
sumeq1 |
⊢ ( 𝑦 = 𝑥 → Σ 𝑘 ∈ 𝑦 𝐵 = Σ 𝑘 ∈ 𝑥 𝐵 ) |
| 192 |
191
|
rspceeqv |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ 𝑥 𝐵 ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ 𝑦 𝐵 ) |
| 193 |
189 190 192
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ 𝑦 𝐵 ) |
| 194 |
169
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 𝐵 ∈ V ) |
| 195 |
185 193 194
|
elrnmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 𝐵 ∈ ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 196 |
|
supxrub |
⊢ ( ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ⊆ ℝ* ∧ Σ 𝑘 ∈ 𝑥 𝐵 ∈ ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ) → Σ 𝑘 ∈ 𝑥 𝐵 ≤ sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) ) |
| 197 |
188 195 196
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 𝐵 ≤ sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) ) |
| 198 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
| 199 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) = ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) |
| 200 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑧 ∈ Fin ) |
| 201 |
200
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑧 ∈ Fin ) |
| 202 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑧 ) → 𝜑 ) |
| 203 |
|
elpwinss |
⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑧 ⊆ 𝐴 ) |
| 204 |
203
|
adantr |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑘 ∈ 𝑧 ) → 𝑧 ⊆ 𝐴 ) |
| 205 |
|
simpr |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑘 ∈ 𝑧 ) → 𝑘 ∈ 𝑧 ) |
| 206 |
204 205
|
sseldd |
⊢ ( ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑘 ∈ 𝑧 ) → 𝑘 ∈ 𝐴 ) |
| 207 |
206
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑧 ) → 𝑘 ∈ 𝐴 ) |
| 208 |
202 207 13
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑧 ) → 𝐶 ∈ ℝ ) |
| 209 |
201 208
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑧 𝐶 ∈ ℝ ) |
| 210 |
209
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑧 𝐶 ∈ ℝ* ) |
| 211 |
198 199 210
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) ⊆ ℝ* ) |
| 212 |
211
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) ⊆ ℝ* ) |
| 213 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 𝐶 = Σ 𝑘 ∈ 𝑥 𝐶 ) |
| 214 |
|
sumeq1 |
⊢ ( 𝑧 = 𝑥 → Σ 𝑘 ∈ 𝑧 𝐶 = Σ 𝑘 ∈ 𝑥 𝐶 ) |
| 215 |
214
|
rspceeqv |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ Σ 𝑘 ∈ 𝑥 𝐶 = Σ 𝑘 ∈ 𝑥 𝐶 ) → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) Σ 𝑘 ∈ 𝑥 𝐶 = Σ 𝑘 ∈ 𝑧 𝐶 ) |
| 216 |
189 213 215
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) Σ 𝑘 ∈ 𝑥 𝐶 = Σ 𝑘 ∈ 𝑧 𝐶 ) |
| 217 |
170
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 𝐶 ∈ V ) |
| 218 |
199 216 217
|
elrnmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 𝐶 ∈ ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) ) |
| 219 |
|
supxrub |
⊢ ( ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) ⊆ ℝ* ∧ Σ 𝑘 ∈ 𝑥 𝐶 ∈ ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) ) → Σ 𝑘 ∈ 𝑥 𝐶 ≤ sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) |
| 220 |
212 218 219
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 𝐶 ≤ sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) |
| 221 |
169 170 171 172 197 220
|
le2addd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( Σ 𝑘 ∈ 𝑥 𝐵 + Σ 𝑘 ∈ 𝑥 𝐶 ) ≤ ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) ) |
| 222 |
168 221
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( Σ^ ‘ ( 𝑘 ∈ 𝑥 ↦ ( 𝐵 + 𝐶 ) ) ) ≤ ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) ) |
| 223 |
222
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑘 ∈ 𝑥 ↦ ( 𝐵 + 𝐶 ) ) ) ≤ ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) ) |
| 224 |
6 1 141 40
|
sge0lefimpt |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) ≤ ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) ↔ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( Σ^ ‘ ( 𝑘 ∈ 𝑥 ↦ ( 𝐵 + 𝐶 ) ) ) ≤ ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) ) ) |
| 225 |
223 224
|
mpbird |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) ≤ ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) ) |
| 226 |
162 225
|
eqbrtrd |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ≤ ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) ) |
| 227 |
40 59 161 226
|
xrletrid |
⊢ ( 𝜑 → ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ) |
| 228 |
32 35 227
|
3eqtrd |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) +𝑒 ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ) |
| 229 |
26 30 228
|
3eqtr4d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 +𝑒 𝐶 ) ) ) = ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) +𝑒 ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) ) |