| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0xaddlem1.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
sge0xaddlem1.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 3 |
|
sge0xaddlem1.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 4 |
|
sge0xaddlem1.rp |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 5 |
|
sge0xaddlem1.u |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐴 ) |
| 6 |
|
sge0xaddlem1.ufi |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
| 7 |
|
sge0xaddlem1.7 |
⊢ ( 𝜑 → 𝑊 ⊆ 𝐴 ) |
| 8 |
|
sge0xaddlem1.wfi |
⊢ ( 𝜑 → 𝑊 ∈ Fin ) |
| 9 |
|
sge0xaddlem1.ltb |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) < ( Σ 𝑘 ∈ 𝑈 𝐵 + ( 𝐸 / 2 ) ) ) |
| 10 |
|
sge0xaddlem1.ltc |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) < ( Σ 𝑘 ∈ 𝑊 𝐶 + ( 𝐸 / 2 ) ) ) |
| 11 |
|
sge0xaddlem1.xr |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 12 |
|
sge0xaddlem1.sb |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ℝ ) |
| 13 |
|
sge0xaddlem1.sc |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ∈ ℝ ) |
| 14 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 15 |
14 1 2
|
sge0revalmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) ) |
| 16 |
14 1 3
|
sge0revalmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) = sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) |
| 17 |
15 16
|
oveq12d |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) = ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) ) |
| 18 |
15
|
eqcomd |
⊢ ( 𝜑 → sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) = ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 19 |
18 12
|
eqeltrd |
⊢ ( 𝜑 → sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) ∈ ℝ ) |
| 20 |
16 13
|
eqeltrrd |
⊢ ( 𝜑 → sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ∈ ℝ ) |
| 21 |
19 20
|
readdcld |
⊢ ( 𝜑 → ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) ∈ ℝ ) |
| 22 |
21
|
rexrd |
⊢ ( 𝜑 → ( sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) + sup ( ran ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑧 𝐶 ) , ℝ* , < ) ) ∈ ℝ* ) |
| 23 |
17 22
|
eqeltrd |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) ∈ ℝ* ) |
| 24 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ∈ Fin ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑥 ∈ Fin ) |
| 26 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝜑 ) |
| 27 |
|
elpwinss |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ⊆ 𝐴 ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑘 ∈ 𝑥 ) → 𝑥 ⊆ 𝐴 ) |
| 29 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝑥 ) |
| 30 |
28 29
|
sseldd |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝐴 ) |
| 31 |
30
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝐴 ) |
| 32 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 33 |
32 2
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 34 |
26 31 33
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝐵 ∈ ℝ ) |
| 35 |
32 3
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 36 |
26 31 35
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝐶 ∈ ℝ ) |
| 37 |
34 36
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 38 |
25 37
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 39 |
38
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ∈ ℝ* ) |
| 40 |
39
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ∈ ℝ* ) |
| 41 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) = ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) |
| 42 |
41
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ∈ ℝ* → ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) ⊆ ℝ* ) |
| 43 |
40 42
|
syl |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) ⊆ ℝ* ) |
| 44 |
|
supxrcl |
⊢ ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) ⊆ ℝ* → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ* ) |
| 45 |
43 44
|
syl |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ* ) |
| 46 |
4
|
rpxrd |
⊢ ( 𝜑 → 𝐸 ∈ ℝ* ) |
| 47 |
45 46
|
xaddcld |
⊢ ( 𝜑 → ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝐸 ) ∈ ℝ* ) |
| 48 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝜑 ) |
| 49 |
5
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ∈ 𝐴 ) |
| 50 |
48 49 2
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 51 |
32 50
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐵 ∈ ℝ ) |
| 52 |
6 51
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑈 𝐵 ∈ ℝ ) |
| 53 |
4
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 54 |
53
|
rehalfcld |
⊢ ( 𝜑 → ( 𝐸 / 2 ) ∈ ℝ ) |
| 55 |
52 54
|
readdcld |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝑈 𝐵 + ( 𝐸 / 2 ) ) ∈ ℝ ) |
| 56 |
32
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 0 [,) +∞ ) ⊆ ℝ ) |
| 57 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝜑 ) |
| 58 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝑊 ⊆ 𝐴 ) |
| 59 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝑘 ∈ 𝑊 ) |
| 60 |
58 59
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝑘 ∈ 𝐴 ) |
| 61 |
57 60 3
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 62 |
56 61
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝐶 ∈ ℝ ) |
| 63 |
8 62
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑊 𝐶 ∈ ℝ ) |
| 64 |
63 54
|
readdcld |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝑊 𝐶 + ( 𝐸 / 2 ) ) ∈ ℝ ) |
| 65 |
55 64
|
readdcld |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ 𝑈 𝐵 + ( 𝐸 / 2 ) ) + ( Σ 𝑘 ∈ 𝑊 𝐶 + ( 𝐸 / 2 ) ) ) ∈ ℝ ) |
| 66 |
65
|
rexrd |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ 𝑈 𝐵 + ( 𝐸 / 2 ) ) + ( Σ 𝑘 ∈ 𝑊 𝐶 + ( 𝐸 / 2 ) ) ) ∈ ℝ* ) |
| 67 |
12 13 55 64 9 10
|
ltadd12dd |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) < ( ( Σ 𝑘 ∈ 𝑈 𝐵 + ( 𝐸 / 2 ) ) + ( Σ 𝑘 ∈ 𝑊 𝐶 + ( 𝐸 / 2 ) ) ) ) |
| 68 |
52
|
recnd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑈 𝐵 ∈ ℂ ) |
| 69 |
54
|
recnd |
⊢ ( 𝜑 → ( 𝐸 / 2 ) ∈ ℂ ) |
| 70 |
63
|
recnd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑊 𝐶 ∈ ℂ ) |
| 71 |
68 69 70 69
|
add4d |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ 𝑈 𝐵 + ( 𝐸 / 2 ) ) + ( Σ 𝑘 ∈ 𝑊 𝐶 + ( 𝐸 / 2 ) ) ) = ( ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) + ( ( 𝐸 / 2 ) + ( 𝐸 / 2 ) ) ) ) |
| 72 |
53
|
recnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 73 |
72
|
2halvesd |
⊢ ( 𝜑 → ( ( 𝐸 / 2 ) + ( 𝐸 / 2 ) ) = 𝐸 ) |
| 74 |
73
|
oveq2d |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) + ( ( 𝐸 / 2 ) + ( 𝐸 / 2 ) ) ) = ( ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) + 𝐸 ) ) |
| 75 |
71 74
|
eqtrd |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ 𝑈 𝐵 + ( 𝐸 / 2 ) ) + ( Σ 𝑘 ∈ 𝑊 𝐶 + ( 𝐸 / 2 ) ) ) = ( ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) + 𝐸 ) ) |
| 76 |
75 66
|
eqeltrrd |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) + 𝐸 ) ∈ ℝ* ) |
| 77 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 78 |
77
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 79 |
75 65
|
eqeltrrd |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) + 𝐸 ) ∈ ℝ ) |
| 80 |
|
ltpnf |
⊢ ( ( ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) + 𝐸 ) ∈ ℝ → ( ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) + 𝐸 ) < +∞ ) |
| 81 |
79 80
|
syl |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) + 𝐸 ) < +∞ ) |
| 82 |
76 78 81
|
xrltled |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) + 𝐸 ) ≤ +∞ ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) = +∞ ) → ( ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) + 𝐸 ) ≤ +∞ ) |
| 84 |
|
oveq1 |
⊢ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) = +∞ → ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝐸 ) = ( +∞ +𝑒 𝐸 ) ) |
| 85 |
84
|
adantl |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) = +∞ ) → ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝐸 ) = ( +∞ +𝑒 𝐸 ) ) |
| 86 |
53
|
renemnfd |
⊢ ( 𝜑 → 𝐸 ≠ -∞ ) |
| 87 |
|
xaddpnf2 |
⊢ ( ( 𝐸 ∈ ℝ* ∧ 𝐸 ≠ -∞ ) → ( +∞ +𝑒 𝐸 ) = +∞ ) |
| 88 |
46 86 87
|
syl2anc |
⊢ ( 𝜑 → ( +∞ +𝑒 𝐸 ) = +∞ ) |
| 89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) = +∞ ) → ( +∞ +𝑒 𝐸 ) = +∞ ) |
| 90 |
85 89
|
eqtr2d |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) = +∞ ) → +∞ = ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝐸 ) ) |
| 91 |
83 90
|
breqtrd |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) = +∞ ) → ( ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) + 𝐸 ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝐸 ) ) |
| 92 |
|
simpl |
⊢ ( ( 𝜑 ∧ ¬ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) = +∞ ) → 𝜑 ) |
| 93 |
92 11
|
syl |
⊢ ( ( 𝜑 ∧ ¬ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) = +∞ ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 94 |
|
neqne |
⊢ ( ¬ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) = +∞ → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ≠ +∞ ) |
| 95 |
94
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) = +∞ ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ≠ +∞ ) |
| 96 |
|
ge0xrre |
⊢ ( ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ≠ +∞ ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ ) |
| 97 |
93 95 96
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) = +∞ ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ ) |
| 98 |
52 63
|
readdcld |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) ∈ ℝ ) |
| 99 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ ) → ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) ∈ ℝ ) |
| 100 |
|
simpr |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ ) |
| 101 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ ) → 𝐸 ∈ ℝ ) |
| 102 |
6 8
|
jca |
⊢ ( 𝜑 → ( 𝑈 ∈ Fin ∧ 𝑊 ∈ Fin ) ) |
| 103 |
|
unfi |
⊢ ( ( 𝑈 ∈ Fin ∧ 𝑊 ∈ Fin ) → ( 𝑈 ∪ 𝑊 ) ∈ Fin ) |
| 104 |
102 103
|
syl |
⊢ ( 𝜑 → ( 𝑈 ∪ 𝑊 ) ∈ Fin ) |
| 105 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ) → 𝜑 ) |
| 106 |
5 7
|
unssd |
⊢ ( 𝜑 → ( 𝑈 ∪ 𝑊 ) ⊆ 𝐴 ) |
| 107 |
106
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ) → ( 𝑈 ∪ 𝑊 ) ⊆ 𝐴 ) |
| 108 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ) → 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ) |
| 109 |
107 108
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ) → 𝑘 ∈ 𝐴 ) |
| 110 |
105 109 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ) → 𝐵 ∈ ℝ ) |
| 111 |
109 35
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ) → 𝐶 ∈ ℝ ) |
| 112 |
110 111
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ) → ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 113 |
104 112
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 114 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ ) → Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 115 |
104 110
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) 𝐵 ∈ ℝ ) |
| 116 |
104 111
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) 𝐶 ∈ ℝ ) |
| 117 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 118 |
117 2
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 119 |
|
xrge0ge0 |
⊢ ( 𝐵 ∈ ( 0 [,] +∞ ) → 0 ≤ 𝐵 ) |
| 120 |
118 119
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
| 121 |
109 120
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ) → 0 ≤ 𝐵 ) |
| 122 |
|
ssun1 |
⊢ 𝑈 ⊆ ( 𝑈 ∪ 𝑊 ) |
| 123 |
122
|
a1i |
⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑈 ∪ 𝑊 ) ) |
| 124 |
104 110 121 123
|
fsumless |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑈 𝐵 ≤ Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) 𝐵 ) |
| 125 |
117 3
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 126 |
|
xrge0ge0 |
⊢ ( 𝐶 ∈ ( 0 [,] +∞ ) → 0 ≤ 𝐶 ) |
| 127 |
125 126
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐶 ) |
| 128 |
109 127
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ) → 0 ≤ 𝐶 ) |
| 129 |
|
ssun2 |
⊢ 𝑊 ⊆ ( 𝑈 ∪ 𝑊 ) |
| 130 |
129
|
a1i |
⊢ ( 𝜑 → 𝑊 ⊆ ( 𝑈 ∪ 𝑊 ) ) |
| 131 |
104 111 128 130
|
fsumless |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑊 𝐶 ≤ Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) 𝐶 ) |
| 132 |
52 63 115 116 124 131
|
leadd12dd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) ≤ ( Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) 𝐵 + Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) 𝐶 ) ) |
| 133 |
110
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ) → 𝐵 ∈ ℂ ) |
| 134 |
111
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ) → 𝐶 ∈ ℂ ) |
| 135 |
104 133 134
|
fsumadd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ( 𝐵 + 𝐶 ) = ( Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) 𝐵 + Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) 𝐶 ) ) |
| 136 |
135
|
eqcomd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) 𝐵 + Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) 𝐶 ) = Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ( 𝐵 + 𝐶 ) ) |
| 137 |
132 136
|
breqtrd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) ≤ Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ( 𝐵 + 𝐶 ) ) |
| 138 |
137
|
adantr |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ ) → ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) ≤ Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ( 𝐵 + 𝐶 ) ) |
| 139 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ ) → ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) ⊆ ℝ* ) |
| 140 |
104 106
|
elpwd |
⊢ ( 𝜑 → ( 𝑈 ∪ 𝑊 ) ∈ 𝒫 𝐴 ) |
| 141 |
140 104
|
elind |
⊢ ( 𝜑 → ( 𝑈 ∪ 𝑊 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 142 |
113
|
elexd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ( 𝐵 + 𝐶 ) ∈ V ) |
| 143 |
|
sumeq1 |
⊢ ( 𝑥 = ( 𝑈 ∪ 𝑊 ) → Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) = Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ( 𝐵 + 𝐶 ) ) |
| 144 |
41 143
|
elrnmpt1s |
⊢ ( ( ( 𝑈 ∪ 𝑊 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ( 𝐵 + 𝐶 ) ∈ V ) → Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ( 𝐵 + 𝐶 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) ) |
| 145 |
141 142 144
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ( 𝐵 + 𝐶 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) ) |
| 146 |
145
|
adantr |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ ) → Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ( 𝐵 + 𝐶 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) ) |
| 147 |
|
supxrub |
⊢ ( ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) ⊆ ℝ* ∧ Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ( 𝐵 + 𝐶 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) ) → Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ( 𝐵 + 𝐶 ) ≤ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ) |
| 148 |
139 146 147
|
syl2anc |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ ) → Σ 𝑘 ∈ ( 𝑈 ∪ 𝑊 ) ( 𝐵 + 𝐶 ) ≤ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ) |
| 149 |
99 114 100 138 148
|
letrd |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ ) → ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) ≤ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ) |
| 150 |
99 100 101 149
|
leadd1dd |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ ) → ( ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) + 𝐸 ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) + 𝐸 ) ) |
| 151 |
|
rexadd |
⊢ ( ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ ∧ 𝐸 ∈ ℝ ) → ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝐸 ) = ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) + 𝐸 ) ) |
| 152 |
100 101 151
|
syl2anc |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ ) → ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝐸 ) = ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) + 𝐸 ) ) |
| 153 |
152
|
eqcomd |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ ) → ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) + 𝐸 ) = ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝐸 ) ) |
| 154 |
150 153
|
breqtrd |
⊢ ( ( 𝜑 ∧ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) ∈ ℝ ) → ( ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) + 𝐸 ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝐸 ) ) |
| 155 |
92 97 154
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) = +∞ ) → ( ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) + 𝐸 ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝐸 ) ) |
| 156 |
91 155
|
pm2.61dan |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ 𝑈 𝐵 + Σ 𝑘 ∈ 𝑊 𝐶 ) + 𝐸 ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝐸 ) ) |
| 157 |
75 156
|
eqbrtrd |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ 𝑈 𝐵 + ( 𝐸 / 2 ) ) + ( Σ 𝑘 ∈ 𝑊 𝐶 + ( 𝐸 / 2 ) ) ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝐸 ) ) |
| 158 |
23 66 47 67 157
|
xrltletrd |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) < ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝐸 ) ) |
| 159 |
23 47 158
|
xrltled |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) + ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) ≤ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 ( 𝐵 + 𝐶 ) ) , ℝ* , < ) +𝑒 𝐸 ) ) |