Step |
Hyp |
Ref |
Expression |
1 |
|
sge0xaddlem2.a |
|
2 |
|
sge0xaddlem2.b |
|
3 |
|
sge0xaddlem2.c |
|
4 |
|
sge0xaddlem2.sb |
|
5 |
|
sge0xaddlem2.sc |
|
6 |
|
nfv |
|
7 |
|
0xr |
|
8 |
7
|
a1i |
|
9 |
|
pnfxr |
|
10 |
9
|
a1i |
|
11 |
|
rge0ssre |
|
12 |
11 2
|
sselid |
|
13 |
11 3
|
sselid |
|
14 |
12 13
|
readdcld |
|
15 |
14
|
rexrd |
|
16 |
|
icossicc |
|
17 |
16 2
|
sselid |
|
18 |
|
xrge0ge0 |
|
19 |
17 18
|
syl |
|
20 |
16 3
|
sselid |
|
21 |
|
xrge0ge0 |
|
22 |
20 21
|
syl |
|
23 |
12 13 19 22
|
addge0d |
|
24 |
14
|
ltpnfd |
|
25 |
8 10 15 23 24
|
elicod |
|
26 |
6 1 25
|
sge0revalmpt |
|
27 |
|
rexadd |
|
28 |
12 13 27
|
syl2anc |
|
29 |
28
|
mpteq2dva |
|
30 |
29
|
fveq2d |
|
31 |
|
rexadd |
|
32 |
4 5 31
|
syl2anc |
|
33 |
6 1 2
|
sge0revalmpt |
|
34 |
6 1 3
|
sge0revalmpt |
|
35 |
33 34
|
oveq12d |
|
36 |
33
|
eqcomd |
|
37 |
36 4
|
eqeltrd |
|
38 |
34 5
|
eqeltrrd |
|
39 |
37 38
|
readdcld |
|
40 |
39
|
rexrd |
|
41 |
|
elinel2 |
|
42 |
41
|
adantl |
|
43 |
|
simpll |
|
44 |
|
elpwinss |
|
45 |
44
|
adantr |
|
46 |
|
simpr |
|
47 |
45 46
|
sseldd |
|
48 |
47
|
adantll |
|
49 |
43 48 12
|
syl2anc |
|
50 |
43 48 13
|
syl2anc |
|
51 |
49 50
|
readdcld |
|
52 |
42 51
|
fsumrecl |
|
53 |
52
|
rexrd |
|
54 |
53
|
ralrimiva |
|
55 |
|
eqid |
|
56 |
55
|
rnmptss |
|
57 |
54 56
|
syl |
|
58 |
|
supxrcl |
|
59 |
57 58
|
syl |
|
60 |
35
|
eqcomd |
|
61 |
60
|
adantr |
|
62 |
|
nfv |
|
63 |
1
|
adantr |
|
64 |
17
|
adantlr |
|
65 |
|
rphalfcl |
|
66 |
65
|
adantl |
|
67 |
4
|
adantr |
|
68 |
62 63 64 66 67
|
sge0ltfirpmpt2 |
|
69 |
20
|
adantlr |
|
70 |
5
|
adantr |
|
71 |
62 63 69 66 70
|
sge0ltfirpmpt2 |
|
72 |
71
|
3ad2ant1 |
|
73 |
63
|
3ad2ant1 |
|
74 |
73
|
3ad2ant1 |
|
75 |
|
simpl1l |
|
76 |
75
|
3ad2antl1 |
|
77 |
|
simpr |
|
78 |
|
nfv |
|
79 |
|
nfcsb1v |
|
80 |
79
|
nfel1 |
|
81 |
78 80
|
nfim |
|
82 |
|
eleq1w |
|
83 |
82
|
anbi2d |
|
84 |
|
csbeq1a |
|
85 |
84
|
eleq1d |
|
86 |
83 85
|
imbi12d |
|
87 |
81 86 2
|
chvarfv |
|
88 |
76 77 87
|
syl2anc |
|
89 |
|
nfcsb1v |
|
90 |
89
|
nfel1 |
|
91 |
78 90
|
nfim |
|
92 |
|
csbeq1a |
|
93 |
92
|
eleq1d |
|
94 |
83 93
|
imbi12d |
|
95 |
91 94 3
|
chvarfv |
|
96 |
76 77 95
|
syl2anc |
|
97 |
|
simp11r |
|
98 |
|
simp12 |
|
99 |
|
elpwinss |
|
100 |
98 99
|
syl |
|
101 |
|
elinel2 |
|
102 |
101
|
3ad2ant2 |
|
103 |
102
|
3ad2ant1 |
|
104 |
|
simp2 |
|
105 |
|
elpwinss |
|
106 |
104 105
|
syl |
|
107 |
|
elinel2 |
|
108 |
107
|
3ad2ant2 |
|
109 |
|
simp13 |
|
110 |
|
nfcv |
|
111 |
110 79 84
|
cbvmpt |
|
112 |
111
|
fveq2i |
|
113 |
|
nfcv |
|
114 |
|
nfcv |
|
115 |
84 113 114 110 79
|
cbvsum |
|
116 |
115
|
oveq1i |
|
117 |
112 116
|
breq12i |
|
118 |
117
|
biimpi |
|
119 |
109 118
|
syl |
|
120 |
|
simp3 |
|
121 |
|
nfcv |
|
122 |
121 89 92
|
cbvmpt |
|
123 |
122
|
fveq2i |
|
124 |
|
nfcv |
|
125 |
|
nfcv |
|
126 |
92 124 125 121 89
|
cbvsum |
|
127 |
126
|
oveq1i |
|
128 |
123 127
|
breq12i |
|
129 |
128
|
biimpi |
|
130 |
120 129
|
syl |
|
131 |
|
simp11l |
|
132 |
84 92
|
oveq12d |
|
133 |
|
nfcv |
|
134 |
|
nfcv |
|
135 |
|
nfcv |
|
136 |
|
nfcv |
|
137 |
79 136 89
|
nfov |
|
138 |
132 133 134 135 137
|
cbvsum |
|
139 |
138
|
mpteq2i |
|
140 |
139
|
rneqi |
|
141 |
140
|
supeq1i |
|
142 |
141
|
eqcomi |
|
143 |
142
|
a1i |
|
144 |
143 26
|
eqtr4d |
|
145 |
|
ge0xaddcl |
|
146 |
17 20 145
|
syl2anc |
|
147 |
28 146
|
eqeltrrd |
|
148 |
6 1 147
|
sge0clmpt |
|
149 |
144 148
|
eqeltrd |
|
150 |
131 149
|
syl |
|
151 |
112 4
|
eqeltrrid |
|
152 |
131 151
|
syl |
|
153 |
123 5
|
eqeltrrid |
|
154 |
131 153
|
syl |
|
155 |
74 88 96 97 100 103 106 108 119 130 150 152 154
|
sge0xaddlem1 |
|
156 |
112 123
|
oveq12i |
|
157 |
141
|
oveq1i |
|
158 |
156 157
|
breq12i |
|
159 |
155 158
|
sylibr |
|
160 |
159
|
3exp |
|
161 |
160
|
rexlimdv |
|
162 |
72 161
|
mpd |
|
163 |
162
|
3exp |
|
164 |
163
|
rexlimdv |
|
165 |
68 164
|
mpd |
|
166 |
61 165
|
eqbrtrd |
|
167 |
40 59 166
|
xrlexaddrp |
|
168 |
26
|
eqcomd |
|
169 |
43 48 25
|
syl2anc |
|
170 |
42 169
|
sge0fsummpt |
|
171 |
49
|
recnd |
|
172 |
50
|
recnd |
|
173 |
42 171 172
|
fsumadd |
|
174 |
170 173
|
eqtrd |
|
175 |
42 49
|
fsumrecl |
|
176 |
42 50
|
fsumrecl |
|
177 |
37
|
adantr |
|
178 |
38
|
adantr |
|
179 |
|
elinel2 |
|
180 |
179
|
adantl |
|
181 |
|
simpll |
|
182 |
|
elpwinss |
|
183 |
182
|
adantr |
|
184 |
|
simpr |
|
185 |
183 184
|
sseldd |
|
186 |
185
|
adantll |
|
187 |
181 186 12
|
syl2anc |
|
188 |
180 187
|
fsumrecl |
|
189 |
188
|
rexrd |
|
190 |
189
|
ralrimiva |
|
191 |
|
eqid |
|
192 |
191
|
rnmptss |
|
193 |
190 192
|
syl |
|
194 |
193
|
adantr |
|
195 |
|
simpr |
|
196 |
|
eqidd |
|
197 |
|
sumeq1 |
|
198 |
197
|
rspceeqv |
|
199 |
195 196 198
|
syl2anc |
|
200 |
175
|
elexd |
|
201 |
191 199 200
|
elrnmptd |
|
202 |
|
supxrub |
|
203 |
194 201 202
|
syl2anc |
|
204 |
|
nfv |
|
205 |
|
eqid |
|
206 |
|
elinel2 |
|
207 |
206
|
adantl |
|
208 |
|
simpll |
|
209 |
|
elpwinss |
|
210 |
209
|
adantr |
|
211 |
|
simpr |
|
212 |
210 211
|
sseldd |
|
213 |
212
|
adantll |
|
214 |
208 213 13
|
syl2anc |
|
215 |
207 214
|
fsumrecl |
|
216 |
215
|
rexrd |
|
217 |
204 205 216
|
rnmptssd |
|
218 |
217
|
adantr |
|
219 |
|
eqidd |
|
220 |
|
sumeq1 |
|
221 |
220
|
rspceeqv |
|
222 |
195 219 221
|
syl2anc |
|
223 |
176
|
elexd |
|
224 |
205 222 223
|
elrnmptd |
|
225 |
|
supxrub |
|
226 |
218 224 225
|
syl2anc |
|
227 |
175 176 177 178 203 226
|
le2addd |
|
228 |
174 227
|
eqbrtrd |
|
229 |
228
|
ralrimiva |
|
230 |
6 1 147 40
|
sge0lefimpt |
|
231 |
229 230
|
mpbird |
|
232 |
168 231
|
eqbrtrd |
|
233 |
40 59 167 232
|
xrletrid |
|
234 |
32 35 233
|
3eqtrd |
|
235 |
26 30 234
|
3eqtr4d |
|