Step |
Hyp |
Ref |
Expression |
1 |
|
sge0xaddlem2.a |
|
2 |
|
sge0xaddlem2.b |
|
3 |
|
sge0xaddlem2.c |
|
4 |
|
sge0xaddlem2.sb |
|
5 |
|
sge0xaddlem2.sc |
|
6 |
|
nfv |
|
7 |
|
0xr |
|
8 |
7
|
a1i |
|
9 |
|
pnfxr |
|
10 |
9
|
a1i |
|
11 |
|
rge0ssre |
|
12 |
11 2
|
sselid |
|
13 |
11 3
|
sselid |
|
14 |
12 13
|
readdcld |
|
15 |
14
|
rexrd |
|
16 |
|
icossicc |
|
17 |
16 2
|
sselid |
|
18 |
|
xrge0ge0 |
|
19 |
17 18
|
syl |
|
20 |
16 3
|
sselid |
|
21 |
|
xrge0ge0 |
|
22 |
20 21
|
syl |
|
23 |
12 13 19 22
|
addge0d |
|
24 |
14
|
ltpnfd |
|
25 |
8 10 15 23 24
|
elicod |
|
26 |
6 1 25
|
sge0revalmpt |
|
27 |
|
rexadd |
|
28 |
12 13 27
|
syl2anc |
|
29 |
28
|
mpteq2dva |
|
30 |
29
|
fveq2d |
|
31 |
|
rexadd |
|
32 |
4 5 31
|
syl2anc |
|
33 |
6 1 2
|
sge0revalmpt |
|
34 |
6 1 3
|
sge0revalmpt |
|
35 |
33 34
|
oveq12d |
|
36 |
33
|
eqcomd |
|
37 |
36 4
|
eqeltrd |
|
38 |
34 5
|
eqeltrrd |
|
39 |
37 38
|
readdcld |
|
40 |
39
|
rexrd |
|
41 |
|
elinel2 |
|
42 |
41
|
adantl |
|
43 |
|
simpll |
|
44 |
|
elpwinss |
|
45 |
44
|
adantr |
|
46 |
|
simpr |
|
47 |
45 46
|
sseldd |
|
48 |
47
|
adantll |
|
49 |
43 48 12
|
syl2anc |
|
50 |
43 48 13
|
syl2anc |
|
51 |
49 50
|
readdcld |
|
52 |
42 51
|
fsumrecl |
|
53 |
52
|
rexrd |
|
54 |
53
|
ralrimiva |
|
55 |
|
eqid |
|
56 |
55
|
rnmptss |
|
57 |
54 56
|
syl |
|
58 |
|
supxrcl |
|
59 |
57 58
|
syl |
|
60 |
35
|
eqcomd |
|
61 |
60
|
adantr |
|
62 |
|
nfv |
|
63 |
1
|
adantr |
|
64 |
17
|
adantlr |
|
65 |
|
rphalfcl |
|
66 |
65
|
adantl |
|
67 |
4
|
adantr |
|
68 |
62 63 64 66 67
|
sge0ltfirpmpt2 |
|
69 |
20
|
adantlr |
|
70 |
5
|
adantr |
|
71 |
62 63 69 66 70
|
sge0ltfirpmpt2 |
|
72 |
71
|
3ad2ant1 |
|
73 |
63
|
3ad2ant1 |
|
74 |
73
|
3ad2ant1 |
|
75 |
|
simpl1l |
|
76 |
75
|
3ad2antl1 |
|
77 |
|
simpr |
|
78 |
|
nfv |
|
79 |
|
nfcsb1v |
|
80 |
79
|
nfel1 |
|
81 |
78 80
|
nfim |
|
82 |
|
eleq1w |
|
83 |
82
|
anbi2d |
|
84 |
|
csbeq1a |
|
85 |
84
|
eleq1d |
|
86 |
83 85
|
imbi12d |
|
87 |
81 86 2
|
chvarfv |
|
88 |
76 77 87
|
syl2anc |
|
89 |
|
nfcsb1v |
|
90 |
89
|
nfel1 |
|
91 |
78 90
|
nfim |
|
92 |
|
csbeq1a |
|
93 |
92
|
eleq1d |
|
94 |
83 93
|
imbi12d |
|
95 |
91 94 3
|
chvarfv |
|
96 |
76 77 95
|
syl2anc |
|
97 |
|
simp11r |
|
98 |
|
simp12 |
|
99 |
|
elpwinss |
|
100 |
98 99
|
syl |
|
101 |
|
elinel2 |
|
102 |
101
|
3ad2ant2 |
|
103 |
102
|
3ad2ant1 |
|
104 |
|
simp2 |
|
105 |
|
elpwinss |
|
106 |
104 105
|
syl |
|
107 |
|
elinel2 |
|
108 |
107
|
3ad2ant2 |
|
109 |
|
simp13 |
|
110 |
|
nfcv |
|
111 |
110 79 84
|
cbvmpt |
|
112 |
111
|
fveq2i |
|
113 |
84 110 79
|
cbvsum |
|
114 |
113
|
oveq1i |
|
115 |
112 114
|
breq12i |
|
116 |
115
|
biimpi |
|
117 |
109 116
|
syl |
|
118 |
|
simp3 |
|
119 |
|
nfcv |
|
120 |
119 89 92
|
cbvmpt |
|
121 |
120
|
fveq2i |
|
122 |
92 119 89
|
cbvsum |
|
123 |
122
|
oveq1i |
|
124 |
121 123
|
breq12i |
|
125 |
124
|
biimpi |
|
126 |
118 125
|
syl |
|
127 |
|
simp11l |
|
128 |
84 92
|
oveq12d |
|
129 |
|
nfcv |
|
130 |
|
nfcv |
|
131 |
79 130 89
|
nfov |
|
132 |
128 129 131
|
cbvsum |
|
133 |
132
|
mpteq2i |
|
134 |
133
|
rneqi |
|
135 |
134
|
supeq1i |
|
136 |
135
|
eqcomi |
|
137 |
136
|
a1i |
|
138 |
137 26
|
eqtr4d |
|
139 |
|
ge0xaddcl |
|
140 |
17 20 139
|
syl2anc |
|
141 |
28 140
|
eqeltrrd |
|
142 |
6 1 141
|
sge0clmpt |
|
143 |
138 142
|
eqeltrd |
|
144 |
127 143
|
syl |
|
145 |
112 4
|
eqeltrrid |
|
146 |
127 145
|
syl |
|
147 |
121 5
|
eqeltrrid |
|
148 |
127 147
|
syl |
|
149 |
74 88 96 97 100 103 106 108 117 126 144 146 148
|
sge0xaddlem1 |
|
150 |
112 121
|
oveq12i |
|
151 |
135
|
oveq1i |
|
152 |
150 151
|
breq12i |
|
153 |
149 152
|
sylibr |
|
154 |
153
|
3exp |
|
155 |
154
|
rexlimdv |
|
156 |
72 155
|
mpd |
|
157 |
156
|
3exp |
|
158 |
157
|
rexlimdv |
|
159 |
68 158
|
mpd |
|
160 |
61 159
|
eqbrtrd |
|
161 |
40 59 160
|
xrlexaddrp |
|
162 |
26
|
eqcomd |
|
163 |
43 48 25
|
syl2anc |
|
164 |
42 163
|
sge0fsummpt |
|
165 |
49
|
recnd |
|
166 |
50
|
recnd |
|
167 |
42 165 166
|
fsumadd |
|
168 |
164 167
|
eqtrd |
|
169 |
42 49
|
fsumrecl |
|
170 |
42 50
|
fsumrecl |
|
171 |
37
|
adantr |
|
172 |
38
|
adantr |
|
173 |
|
elinel2 |
|
174 |
173
|
adantl |
|
175 |
|
simpll |
|
176 |
|
elpwinss |
|
177 |
176
|
adantr |
|
178 |
|
simpr |
|
179 |
177 178
|
sseldd |
|
180 |
179
|
adantll |
|
181 |
175 180 12
|
syl2anc |
|
182 |
174 181
|
fsumrecl |
|
183 |
182
|
rexrd |
|
184 |
183
|
ralrimiva |
|
185 |
|
eqid |
|
186 |
185
|
rnmptss |
|
187 |
184 186
|
syl |
|
188 |
187
|
adantr |
|
189 |
|
simpr |
|
190 |
|
eqidd |
|
191 |
|
sumeq1 |
|
192 |
191
|
rspceeqv |
|
193 |
189 190 192
|
syl2anc |
|
194 |
169
|
elexd |
|
195 |
185 193 194
|
elrnmptd |
|
196 |
|
supxrub |
|
197 |
188 195 196
|
syl2anc |
|
198 |
|
nfv |
|
199 |
|
eqid |
|
200 |
|
elinel2 |
|
201 |
200
|
adantl |
|
202 |
|
simpll |
|
203 |
|
elpwinss |
|
204 |
203
|
adantr |
|
205 |
|
simpr |
|
206 |
204 205
|
sseldd |
|
207 |
206
|
adantll |
|
208 |
202 207 13
|
syl2anc |
|
209 |
201 208
|
fsumrecl |
|
210 |
209
|
rexrd |
|
211 |
198 199 210
|
rnmptssd |
|
212 |
211
|
adantr |
|
213 |
|
eqidd |
|
214 |
|
sumeq1 |
|
215 |
214
|
rspceeqv |
|
216 |
189 213 215
|
syl2anc |
|
217 |
170
|
elexd |
|
218 |
199 216 217
|
elrnmptd |
|
219 |
|
supxrub |
|
220 |
212 218 219
|
syl2anc |
|
221 |
169 170 171 172 197 220
|
le2addd |
|
222 |
168 221
|
eqbrtrd |
|
223 |
222
|
ralrimiva |
|
224 |
6 1 141 40
|
sge0lefimpt |
|
225 |
223 224
|
mpbird |
|
226 |
162 225
|
eqbrtrd |
|
227 |
40 59 161 226
|
xrletrid |
|
228 |
32 35 227
|
3eqtrd |
|
229 |
26 30 228
|
3eqtr4d |
|