| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrlexaddrp.1 |
|- ( ph -> A e. RR* ) |
| 2 |
|
xrlexaddrp.2 |
|- ( ph -> B e. RR* ) |
| 3 |
|
xrlexaddrp.3 |
|- ( ( ph /\ x e. RR+ ) -> A <_ ( B +e x ) ) |
| 4 |
|
pnfge |
|- ( A e. RR* -> A <_ +oo ) |
| 5 |
1 4
|
syl |
|- ( ph -> A <_ +oo ) |
| 6 |
5
|
adantr |
|- ( ( ph /\ B = +oo ) -> A <_ +oo ) |
| 7 |
|
id |
|- ( B = +oo -> B = +oo ) |
| 8 |
7
|
eqcomd |
|- ( B = +oo -> +oo = B ) |
| 9 |
8
|
adantl |
|- ( ( ph /\ B = +oo ) -> +oo = B ) |
| 10 |
6 9
|
breqtrd |
|- ( ( ph /\ B = +oo ) -> A <_ B ) |
| 11 |
|
simpl |
|- ( ( ph /\ -. B = +oo ) -> ph ) |
| 12 |
|
neqne |
|- ( -. B = +oo -> B =/= +oo ) |
| 13 |
12
|
adantl |
|- ( ( ph /\ -. B = +oo ) -> B =/= +oo ) |
| 14 |
|
simpr |
|- ( ( ph /\ A = -oo ) -> A = -oo ) |
| 15 |
|
mnfle |
|- ( B e. RR* -> -oo <_ B ) |
| 16 |
2 15
|
syl |
|- ( ph -> -oo <_ B ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ A = -oo ) -> -oo <_ B ) |
| 18 |
14 17
|
eqbrtrd |
|- ( ( ph /\ A = -oo ) -> A <_ B ) |
| 19 |
18
|
adantlr |
|- ( ( ( ph /\ B =/= +oo ) /\ A = -oo ) -> A <_ B ) |
| 20 |
|
simpl |
|- ( ( ( ph /\ B =/= +oo ) /\ -. A = -oo ) -> ( ph /\ B =/= +oo ) ) |
| 21 |
|
neqne |
|- ( -. A = -oo -> A =/= -oo ) |
| 22 |
21
|
adantl |
|- ( ( ( ph /\ B =/= +oo ) /\ -. A = -oo ) -> A =/= -oo ) |
| 23 |
|
simpll |
|- ( ( ( ph /\ B =/= +oo ) /\ A =/= -oo ) -> ph ) |
| 24 |
2
|
adantr |
|- ( ( ph /\ B =/= +oo ) -> B e. RR* ) |
| 25 |
|
simpr |
|- ( ( ph /\ B =/= +oo ) -> B =/= +oo ) |
| 26 |
24 25
|
jca |
|- ( ( ph /\ B =/= +oo ) -> ( B e. RR* /\ B =/= +oo ) ) |
| 27 |
|
xrnepnf |
|- ( ( B e. RR* /\ B =/= +oo ) <-> ( B e. RR \/ B = -oo ) ) |
| 28 |
26 27
|
sylib |
|- ( ( ph /\ B =/= +oo ) -> ( B e. RR \/ B = -oo ) ) |
| 29 |
28
|
adantr |
|- ( ( ( ph /\ B =/= +oo ) /\ -. B e. RR ) -> ( B e. RR \/ B = -oo ) ) |
| 30 |
|
simpr |
|- ( ( ( ph /\ B =/= +oo ) /\ -. B e. RR ) -> -. B e. RR ) |
| 31 |
|
pm2.53 |
|- ( ( B e. RR \/ B = -oo ) -> ( -. B e. RR -> B = -oo ) ) |
| 32 |
29 30 31
|
sylc |
|- ( ( ( ph /\ B =/= +oo ) /\ -. B e. RR ) -> B = -oo ) |
| 33 |
32
|
adantlr |
|- ( ( ( ( ph /\ B =/= +oo ) /\ A =/= -oo ) /\ -. B e. RR ) -> B = -oo ) |
| 34 |
|
id |
|- ( ph -> ph ) |
| 35 |
|
1rp |
|- 1 e. RR+ |
| 36 |
35
|
a1i |
|- ( ph -> 1 e. RR+ ) |
| 37 |
|
1re |
|- 1 e. RR |
| 38 |
37
|
elexi |
|- 1 e. _V |
| 39 |
|
eleq1 |
|- ( x = 1 -> ( x e. RR+ <-> 1 e. RR+ ) ) |
| 40 |
39
|
anbi2d |
|- ( x = 1 -> ( ( ph /\ x e. RR+ ) <-> ( ph /\ 1 e. RR+ ) ) ) |
| 41 |
|
oveq2 |
|- ( x = 1 -> ( B +e x ) = ( B +e 1 ) ) |
| 42 |
41
|
breq2d |
|- ( x = 1 -> ( A <_ ( B +e x ) <-> A <_ ( B +e 1 ) ) ) |
| 43 |
40 42
|
imbi12d |
|- ( x = 1 -> ( ( ( ph /\ x e. RR+ ) -> A <_ ( B +e x ) ) <-> ( ( ph /\ 1 e. RR+ ) -> A <_ ( B +e 1 ) ) ) ) |
| 44 |
38 43 3
|
vtocl |
|- ( ( ph /\ 1 e. RR+ ) -> A <_ ( B +e 1 ) ) |
| 45 |
34 36 44
|
syl2anc |
|- ( ph -> A <_ ( B +e 1 ) ) |
| 46 |
45
|
ad2antrr |
|- ( ( ( ph /\ A =/= -oo ) /\ B = -oo ) -> A <_ ( B +e 1 ) ) |
| 47 |
|
oveq1 |
|- ( B = -oo -> ( B +e 1 ) = ( -oo +e 1 ) ) |
| 48 |
|
1xr |
|- 1 e. RR* |
| 49 |
|
ltpnf |
|- ( 1 e. RR -> 1 < +oo ) |
| 50 |
37 49
|
ax-mp |
|- 1 < +oo |
| 51 |
37 50
|
ltneii |
|- 1 =/= +oo |
| 52 |
|
xaddmnf2 |
|- ( ( 1 e. RR* /\ 1 =/= +oo ) -> ( -oo +e 1 ) = -oo ) |
| 53 |
48 51 52
|
mp2an |
|- ( -oo +e 1 ) = -oo |
| 54 |
53
|
a1i |
|- ( B = -oo -> ( -oo +e 1 ) = -oo ) |
| 55 |
47 54
|
eqtr2d |
|- ( B = -oo -> -oo = ( B +e 1 ) ) |
| 56 |
55
|
adantl |
|- ( ( ( ph /\ A =/= -oo ) /\ B = -oo ) -> -oo = ( B +e 1 ) ) |
| 57 |
56
|
eqcomd |
|- ( ( ( ph /\ A =/= -oo ) /\ B = -oo ) -> ( B +e 1 ) = -oo ) |
| 58 |
1
|
adantr |
|- ( ( ph /\ A =/= -oo ) -> A e. RR* ) |
| 59 |
|
simpr |
|- ( ( ph /\ A =/= -oo ) -> A =/= -oo ) |
| 60 |
|
nemnftgtmnft |
|- ( ( A e. RR* /\ A =/= -oo ) -> -oo < A ) |
| 61 |
58 59 60
|
syl2anc |
|- ( ( ph /\ A =/= -oo ) -> -oo < A ) |
| 62 |
61
|
adantr |
|- ( ( ( ph /\ A =/= -oo ) /\ B = -oo ) -> -oo < A ) |
| 63 |
57 62
|
eqbrtrd |
|- ( ( ( ph /\ A =/= -oo ) /\ B = -oo ) -> ( B +e 1 ) < A ) |
| 64 |
2
|
ad2antrr |
|- ( ( ( ph /\ A =/= -oo ) /\ B = -oo ) -> B e. RR* ) |
| 65 |
48
|
a1i |
|- ( ( ( ph /\ A =/= -oo ) /\ B = -oo ) -> 1 e. RR* ) |
| 66 |
64 65
|
xaddcld |
|- ( ( ( ph /\ A =/= -oo ) /\ B = -oo ) -> ( B +e 1 ) e. RR* ) |
| 67 |
1
|
ad2antrr |
|- ( ( ( ph /\ A =/= -oo ) /\ B = -oo ) -> A e. RR* ) |
| 68 |
|
xrltnle |
|- ( ( ( B +e 1 ) e. RR* /\ A e. RR* ) -> ( ( B +e 1 ) < A <-> -. A <_ ( B +e 1 ) ) ) |
| 69 |
66 67 68
|
syl2anc |
|- ( ( ( ph /\ A =/= -oo ) /\ B = -oo ) -> ( ( B +e 1 ) < A <-> -. A <_ ( B +e 1 ) ) ) |
| 70 |
63 69
|
mpbid |
|- ( ( ( ph /\ A =/= -oo ) /\ B = -oo ) -> -. A <_ ( B +e 1 ) ) |
| 71 |
46 70
|
pm2.65da |
|- ( ( ph /\ A =/= -oo ) -> -. B = -oo ) |
| 72 |
71
|
neqned |
|- ( ( ph /\ A =/= -oo ) -> B =/= -oo ) |
| 73 |
72
|
ad4ant13 |
|- ( ( ( ( ph /\ B =/= +oo ) /\ A =/= -oo ) /\ -. B e. RR ) -> B =/= -oo ) |
| 74 |
73
|
neneqd |
|- ( ( ( ( ph /\ B =/= +oo ) /\ A =/= -oo ) /\ -. B e. RR ) -> -. B = -oo ) |
| 75 |
33 74
|
condan |
|- ( ( ( ph /\ B =/= +oo ) /\ A =/= -oo ) -> B e. RR ) |
| 76 |
3
|
adantlr |
|- ( ( ( ph /\ B e. RR ) /\ x e. RR+ ) -> A <_ ( B +e x ) ) |
| 77 |
|
simpl |
|- ( ( B e. RR /\ x e. RR+ ) -> B e. RR ) |
| 78 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 79 |
78
|
adantl |
|- ( ( B e. RR /\ x e. RR+ ) -> x e. RR ) |
| 80 |
|
rexadd |
|- ( ( B e. RR /\ x e. RR ) -> ( B +e x ) = ( B + x ) ) |
| 81 |
77 79 80
|
syl2anc |
|- ( ( B e. RR /\ x e. RR+ ) -> ( B +e x ) = ( B + x ) ) |
| 82 |
81
|
adantll |
|- ( ( ( ph /\ B e. RR ) /\ x e. RR+ ) -> ( B +e x ) = ( B + x ) ) |
| 83 |
76 82
|
breqtrd |
|- ( ( ( ph /\ B e. RR ) /\ x e. RR+ ) -> A <_ ( B + x ) ) |
| 84 |
83
|
ralrimiva |
|- ( ( ph /\ B e. RR ) -> A. x e. RR+ A <_ ( B + x ) ) |
| 85 |
1
|
adantr |
|- ( ( ph /\ B e. RR ) -> A e. RR* ) |
| 86 |
|
simpr |
|- ( ( ph /\ B e. RR ) -> B e. RR ) |
| 87 |
|
xralrple |
|- ( ( A e. RR* /\ B e. RR ) -> ( A <_ B <-> A. x e. RR+ A <_ ( B + x ) ) ) |
| 88 |
85 86 87
|
syl2anc |
|- ( ( ph /\ B e. RR ) -> ( A <_ B <-> A. x e. RR+ A <_ ( B + x ) ) ) |
| 89 |
84 88
|
mpbird |
|- ( ( ph /\ B e. RR ) -> A <_ B ) |
| 90 |
23 75 89
|
syl2anc |
|- ( ( ( ph /\ B =/= +oo ) /\ A =/= -oo ) -> A <_ B ) |
| 91 |
20 22 90
|
syl2anc |
|- ( ( ( ph /\ B =/= +oo ) /\ -. A = -oo ) -> A <_ B ) |
| 92 |
19 91
|
pm2.61dan |
|- ( ( ph /\ B =/= +oo ) -> A <_ B ) |
| 93 |
11 13 92
|
syl2anc |
|- ( ( ph /\ -. B = +oo ) -> A <_ B ) |
| 94 |
10 93
|
pm2.61dan |
|- ( ph -> A <_ B ) |