| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0xadd.kph |
|- F/ k ph |
| 2 |
|
sge0xadd.a |
|- ( ph -> A e. V ) |
| 3 |
|
sge0xadd.b |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
| 4 |
|
sge0xadd.c |
|- ( ( ph /\ k e. A ) -> C e. ( 0 [,] +oo ) ) |
| 5 |
|
simpr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( sum^ ` ( k e. A |-> B ) ) = +oo ) |
| 6 |
5
|
oveq1d |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) = ( +oo +e ( sum^ ` ( k e. A |-> C ) ) ) ) |
| 7 |
1 2 4
|
sge0xrclmpt |
|- ( ph -> ( sum^ ` ( k e. A |-> C ) ) e. RR* ) |
| 8 |
|
eqid |
|- ( k e. A |-> C ) = ( k e. A |-> C ) |
| 9 |
1 4 8
|
fmptdf |
|- ( ph -> ( k e. A |-> C ) : A --> ( 0 [,] +oo ) ) |
| 10 |
2 9
|
sge0nemnf |
|- ( ph -> ( sum^ ` ( k e. A |-> C ) ) =/= -oo ) |
| 11 |
|
xaddpnf2 |
|- ( ( ( sum^ ` ( k e. A |-> C ) ) e. RR* /\ ( sum^ ` ( k e. A |-> C ) ) =/= -oo ) -> ( +oo +e ( sum^ ` ( k e. A |-> C ) ) ) = +oo ) |
| 12 |
7 10 11
|
syl2anc |
|- ( ph -> ( +oo +e ( sum^ ` ( k e. A |-> C ) ) ) = +oo ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( +oo +e ( sum^ ` ( k e. A |-> C ) ) ) = +oo ) |
| 14 |
|
ge0xaddcl |
|- ( ( B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( B +e C ) e. ( 0 [,] +oo ) ) |
| 15 |
3 4 14
|
syl2anc |
|- ( ( ph /\ k e. A ) -> ( B +e C ) e. ( 0 [,] +oo ) ) |
| 16 |
1 2 15
|
sge0xrclmpt |
|- ( ph -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) e. RR* ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) e. RR* ) |
| 18 |
|
id |
|- ( ( sum^ ` ( k e. A |-> B ) ) = +oo -> ( sum^ ` ( k e. A |-> B ) ) = +oo ) |
| 19 |
18
|
eqcomd |
|- ( ( sum^ ` ( k e. A |-> B ) ) = +oo -> +oo = ( sum^ ` ( k e. A |-> B ) ) ) |
| 20 |
19
|
adantl |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> +oo = ( sum^ ` ( k e. A |-> B ) ) ) |
| 21 |
2
|
elexd |
|- ( ph -> A e. _V ) |
| 22 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 23 |
22 3
|
sselid |
|- ( ( ph /\ k e. A ) -> B e. RR* ) |
| 24 |
23 4
|
xadd0ge |
|- ( ( ph /\ k e. A ) -> B <_ ( B +e C ) ) |
| 25 |
1 21 3 15 24
|
sge0lempt |
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) <_ ( sum^ ` ( k e. A |-> ( B +e C ) ) ) ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( sum^ ` ( k e. A |-> B ) ) <_ ( sum^ ` ( k e. A |-> ( B +e C ) ) ) ) |
| 27 |
20 26
|
eqbrtrd |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> +oo <_ ( sum^ ` ( k e. A |-> ( B +e C ) ) ) ) |
| 28 |
17 27
|
xrgepnfd |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = +oo ) |
| 29 |
28
|
eqcomd |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> +oo = ( sum^ ` ( k e. A |-> ( B +e C ) ) ) ) |
| 30 |
6 13 29
|
3eqtrrd |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) ) |
| 31 |
|
simpl |
|- ( ( ph /\ -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ph ) |
| 32 |
|
simpr |
|- ( ( ph /\ -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) |
| 33 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
| 34 |
1 3 33
|
fmptdf |
|- ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
| 35 |
2 34
|
sge0repnf |
|- ( ph -> ( ( sum^ ` ( k e. A |-> B ) ) e. RR <-> -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( ( sum^ ` ( k e. A |-> B ) ) e. RR <-> -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) ) |
| 37 |
32 36
|
mpbird |
|- ( ( ph /\ -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( sum^ ` ( k e. A |-> B ) ) e. RR ) |
| 38 |
|
simpr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> C ) ) = +oo ) |
| 39 |
38
|
oveq2d |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e +oo ) ) |
| 40 |
2 34
|
sge0xrcl |
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) e. RR* ) |
| 41 |
2 34
|
sge0nemnf |
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) =/= -oo ) |
| 42 |
|
xaddpnf1 |
|- ( ( ( sum^ ` ( k e. A |-> B ) ) e. RR* /\ ( sum^ ` ( k e. A |-> B ) ) =/= -oo ) -> ( ( sum^ ` ( k e. A |-> B ) ) +e +oo ) = +oo ) |
| 43 |
40 41 42
|
syl2anc |
|- ( ph -> ( ( sum^ ` ( k e. A |-> B ) ) +e +oo ) = +oo ) |
| 44 |
43
|
adantr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( ( sum^ ` ( k e. A |-> B ) ) +e +oo ) = +oo ) |
| 45 |
16
|
adantr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) e. RR* ) |
| 46 |
|
id |
|- ( ( sum^ ` ( k e. A |-> C ) ) = +oo -> ( sum^ ` ( k e. A |-> C ) ) = +oo ) |
| 47 |
46
|
eqcomd |
|- ( ( sum^ ` ( k e. A |-> C ) ) = +oo -> +oo = ( sum^ ` ( k e. A |-> C ) ) ) |
| 48 |
47
|
adantl |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> +oo = ( sum^ ` ( k e. A |-> C ) ) ) |
| 49 |
22 4
|
sselid |
|- ( ( ph /\ k e. A ) -> C e. RR* ) |
| 50 |
49 3
|
xadd0ge2 |
|- ( ( ph /\ k e. A ) -> C <_ ( B +e C ) ) |
| 51 |
1 2 4 15 50
|
sge0lempt |
|- ( ph -> ( sum^ ` ( k e. A |-> C ) ) <_ ( sum^ ` ( k e. A |-> ( B +e C ) ) ) ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> C ) ) <_ ( sum^ ` ( k e. A |-> ( B +e C ) ) ) ) |
| 53 |
48 52
|
eqbrtrd |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> +oo <_ ( sum^ ` ( k e. A |-> ( B +e C ) ) ) ) |
| 54 |
45 53
|
xrgepnfd |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = +oo ) |
| 55 |
54
|
eqcomd |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> +oo = ( sum^ ` ( k e. A |-> ( B +e C ) ) ) ) |
| 56 |
39 44 55
|
3eqtrrd |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) ) |
| 57 |
56
|
adantlr |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) ) |
| 58 |
|
simpl |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) ) |
| 59 |
|
simpr |
|- ( ( ph /\ -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) |
| 60 |
2 9
|
sge0repnf |
|- ( ph -> ( ( sum^ ` ( k e. A |-> C ) ) e. RR <-> -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) ) |
| 61 |
60
|
adantr |
|- ( ( ph /\ -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( ( sum^ ` ( k e. A |-> C ) ) e. RR <-> -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) ) |
| 62 |
59 61
|
mpbird |
|- ( ( ph /\ -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> C ) ) e. RR ) |
| 63 |
62
|
adantlr |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> C ) ) e. RR ) |
| 64 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> A e. V ) |
| 65 |
|
nfcv |
|- F/_ k sum^ |
| 66 |
|
nfmpt1 |
|- F/_ k ( k e. A |-> B ) |
| 67 |
65 66
|
nffv |
|- F/_ k ( sum^ ` ( k e. A |-> B ) ) |
| 68 |
|
nfcv |
|- F/_ k RR |
| 69 |
67 68
|
nfel |
|- F/ k ( sum^ ` ( k e. A |-> B ) ) e. RR |
| 70 |
1 69
|
nfan |
|- F/ k ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) |
| 71 |
|
nfv |
|- F/ k j e. A |
| 72 |
70 71
|
nfan |
|- F/ k ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ j e. A ) |
| 73 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ B |
| 74 |
73
|
nfel1 |
|- F/ k [_ j / k ]_ B e. ( 0 [,) +oo ) |
| 75 |
72 74
|
nfim |
|- F/ k ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ j e. A ) -> [_ j / k ]_ B e. ( 0 [,) +oo ) ) |
| 76 |
|
eleq1w |
|- ( k = j -> ( k e. A <-> j e. A ) ) |
| 77 |
76
|
anbi2d |
|- ( k = j -> ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ k e. A ) <-> ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ j e. A ) ) ) |
| 78 |
|
csbeq1a |
|- ( k = j -> B = [_ j / k ]_ B ) |
| 79 |
78
|
eleq1d |
|- ( k = j -> ( B e. ( 0 [,) +oo ) <-> [_ j / k ]_ B e. ( 0 [,) +oo ) ) ) |
| 80 |
77 79
|
imbi12d |
|- ( k = j -> ( ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ k e. A ) -> B e. ( 0 [,) +oo ) ) <-> ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ j e. A ) -> [_ j / k ]_ B e. ( 0 [,) +oo ) ) ) ) |
| 81 |
2
|
adantr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) -> A e. V ) |
| 82 |
3
|
adantlr |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
| 83 |
|
simpr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) -> ( sum^ ` ( k e. A |-> B ) ) e. RR ) |
| 84 |
70 81 82 83
|
sge0rernmpt |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ k e. A ) -> B e. ( 0 [,) +oo ) ) |
| 85 |
75 80 84
|
chvarfv |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ j e. A ) -> [_ j / k ]_ B e. ( 0 [,) +oo ) ) |
| 86 |
85
|
adantlr |
|- ( ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ j e. A ) -> [_ j / k ]_ B e. ( 0 [,) +oo ) ) |
| 87 |
|
nfmpt1 |
|- F/_ k ( k e. A |-> C ) |
| 88 |
65 87
|
nffv |
|- F/_ k ( sum^ ` ( k e. A |-> C ) ) |
| 89 |
88 68
|
nfel |
|- F/ k ( sum^ ` ( k e. A |-> C ) ) e. RR |
| 90 |
1 89
|
nfan |
|- F/ k ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) |
| 91 |
90 71
|
nfan |
|- F/ k ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ j e. A ) |
| 92 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ C |
| 93 |
92
|
nfel1 |
|- F/ k [_ j / k ]_ C e. ( 0 [,) +oo ) |
| 94 |
91 93
|
nfim |
|- F/ k ( ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ j e. A ) -> [_ j / k ]_ C e. ( 0 [,) +oo ) ) |
| 95 |
76
|
anbi2d |
|- ( k = j -> ( ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ k e. A ) <-> ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ j e. A ) ) ) |
| 96 |
|
csbeq1a |
|- ( k = j -> C = [_ j / k ]_ C ) |
| 97 |
96
|
eleq1d |
|- ( k = j -> ( C e. ( 0 [,) +oo ) <-> [_ j / k ]_ C e. ( 0 [,) +oo ) ) ) |
| 98 |
95 97
|
imbi12d |
|- ( k = j -> ( ( ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ k e. A ) -> C e. ( 0 [,) +oo ) ) <-> ( ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ j e. A ) -> [_ j / k ]_ C e. ( 0 [,) +oo ) ) ) ) |
| 99 |
2
|
adantr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> A e. V ) |
| 100 |
4
|
adantlr |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ k e. A ) -> C e. ( 0 [,] +oo ) ) |
| 101 |
|
simpr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> ( sum^ ` ( k e. A |-> C ) ) e. RR ) |
| 102 |
90 99 100 101
|
sge0rernmpt |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ k e. A ) -> C e. ( 0 [,) +oo ) ) |
| 103 |
94 98 102
|
chvarfv |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ j e. A ) -> [_ j / k ]_ C e. ( 0 [,) +oo ) ) |
| 104 |
103
|
adantllr |
|- ( ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ j e. A ) -> [_ j / k ]_ C e. ( 0 [,) +oo ) ) |
| 105 |
|
nfcv |
|- F/_ j B |
| 106 |
105 73 78
|
cbvmpt |
|- ( k e. A |-> B ) = ( j e. A |-> [_ j / k ]_ B ) |
| 107 |
106
|
fveq2i |
|- ( sum^ ` ( k e. A |-> B ) ) = ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) |
| 108 |
|
simplr |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> ( sum^ ` ( k e. A |-> B ) ) e. RR ) |
| 109 |
107 108
|
eqeltrrid |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) e. RR ) |
| 110 |
|
nfcv |
|- F/_ j C |
| 111 |
110 92 96
|
cbvmpt |
|- ( k e. A |-> C ) = ( j e. A |-> [_ j / k ]_ C ) |
| 112 |
111
|
fveq2i |
|- ( sum^ ` ( k e. A |-> C ) ) = ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) |
| 113 |
|
simpr |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> ( sum^ ` ( k e. A |-> C ) ) e. RR ) |
| 114 |
112 113
|
eqeltrrid |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) e. RR ) |
| 115 |
64 86 104 109 114
|
sge0xaddlem2 |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> ( sum^ ` ( j e. A |-> ( [_ j / k ]_ B +e [_ j / k ]_ C ) ) ) = ( ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) +e ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) ) ) |
| 116 |
|
nfcv |
|- F/_ j ( B +e C ) |
| 117 |
|
nfcv |
|- F/_ k +e |
| 118 |
73 117 92
|
nfov |
|- F/_ k ( [_ j / k ]_ B +e [_ j / k ]_ C ) |
| 119 |
78 96
|
oveq12d |
|- ( k = j -> ( B +e C ) = ( [_ j / k ]_ B +e [_ j / k ]_ C ) ) |
| 120 |
116 118 119
|
cbvmpt |
|- ( k e. A |-> ( B +e C ) ) = ( j e. A |-> ( [_ j / k ]_ B +e [_ j / k ]_ C ) ) |
| 121 |
120
|
fveq2i |
|- ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( sum^ ` ( j e. A |-> ( [_ j / k ]_ B +e [_ j / k ]_ C ) ) ) |
| 122 |
107 112
|
oveq12i |
|- ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) = ( ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) +e ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) ) |
| 123 |
121 122
|
eqeq12i |
|- ( ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) <-> ( sum^ ` ( j e. A |-> ( [_ j / k ]_ B +e [_ j / k ]_ C ) ) ) = ( ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) +e ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) ) ) |
| 124 |
115 123
|
sylibr |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) ) |
| 125 |
58 63 124
|
syl2anc |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) ) |
| 126 |
57 125
|
pm2.61dan |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) ) |
| 127 |
31 37 126
|
syl2anc |
|- ( ( ph /\ -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) ) |
| 128 |
30 127
|
pm2.61dan |
|- ( ph -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) ) |