Step |
Hyp |
Ref |
Expression |
1 |
|
sge0xadd.kph |
|- F/ k ph |
2 |
|
sge0xadd.a |
|- ( ph -> A e. V ) |
3 |
|
sge0xadd.b |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
4 |
|
sge0xadd.c |
|- ( ( ph /\ k e. A ) -> C e. ( 0 [,] +oo ) ) |
5 |
|
simpr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( sum^ ` ( k e. A |-> B ) ) = +oo ) |
6 |
5
|
oveq1d |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) = ( +oo +e ( sum^ ` ( k e. A |-> C ) ) ) ) |
7 |
1 2 4
|
sge0xrclmpt |
|- ( ph -> ( sum^ ` ( k e. A |-> C ) ) e. RR* ) |
8 |
|
eqid |
|- ( k e. A |-> C ) = ( k e. A |-> C ) |
9 |
1 4 8
|
fmptdf |
|- ( ph -> ( k e. A |-> C ) : A --> ( 0 [,] +oo ) ) |
10 |
2 9
|
sge0nemnf |
|- ( ph -> ( sum^ ` ( k e. A |-> C ) ) =/= -oo ) |
11 |
|
xaddpnf2 |
|- ( ( ( sum^ ` ( k e. A |-> C ) ) e. RR* /\ ( sum^ ` ( k e. A |-> C ) ) =/= -oo ) -> ( +oo +e ( sum^ ` ( k e. A |-> C ) ) ) = +oo ) |
12 |
7 10 11
|
syl2anc |
|- ( ph -> ( +oo +e ( sum^ ` ( k e. A |-> C ) ) ) = +oo ) |
13 |
12
|
adantr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( +oo +e ( sum^ ` ( k e. A |-> C ) ) ) = +oo ) |
14 |
|
ge0xaddcl |
|- ( ( B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( B +e C ) e. ( 0 [,] +oo ) ) |
15 |
3 4 14
|
syl2anc |
|- ( ( ph /\ k e. A ) -> ( B +e C ) e. ( 0 [,] +oo ) ) |
16 |
1 2 15
|
sge0xrclmpt |
|- ( ph -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) e. RR* ) |
17 |
16
|
adantr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) e. RR* ) |
18 |
|
id |
|- ( ( sum^ ` ( k e. A |-> B ) ) = +oo -> ( sum^ ` ( k e. A |-> B ) ) = +oo ) |
19 |
18
|
eqcomd |
|- ( ( sum^ ` ( k e. A |-> B ) ) = +oo -> +oo = ( sum^ ` ( k e. A |-> B ) ) ) |
20 |
19
|
adantl |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> +oo = ( sum^ ` ( k e. A |-> B ) ) ) |
21 |
2
|
elexd |
|- ( ph -> A e. _V ) |
22 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
23 |
22 3
|
sselid |
|- ( ( ph /\ k e. A ) -> B e. RR* ) |
24 |
23 4
|
xadd0ge |
|- ( ( ph /\ k e. A ) -> B <_ ( B +e C ) ) |
25 |
1 21 3 15 24
|
sge0lempt |
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) <_ ( sum^ ` ( k e. A |-> ( B +e C ) ) ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( sum^ ` ( k e. A |-> B ) ) <_ ( sum^ ` ( k e. A |-> ( B +e C ) ) ) ) |
27 |
20 26
|
eqbrtrd |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> +oo <_ ( sum^ ` ( k e. A |-> ( B +e C ) ) ) ) |
28 |
17 27
|
xrgepnfd |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = +oo ) |
29 |
28
|
eqcomd |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> +oo = ( sum^ ` ( k e. A |-> ( B +e C ) ) ) ) |
30 |
6 13 29
|
3eqtrrd |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) ) |
31 |
|
simpl |
|- ( ( ph /\ -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ph ) |
32 |
|
simpr |
|- ( ( ph /\ -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) |
33 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
34 |
1 3 33
|
fmptdf |
|- ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
35 |
2 34
|
sge0repnf |
|- ( ph -> ( ( sum^ ` ( k e. A |-> B ) ) e. RR <-> -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) ) |
36 |
35
|
adantr |
|- ( ( ph /\ -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( ( sum^ ` ( k e. A |-> B ) ) e. RR <-> -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) ) |
37 |
32 36
|
mpbird |
|- ( ( ph /\ -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( sum^ ` ( k e. A |-> B ) ) e. RR ) |
38 |
|
simpr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> C ) ) = +oo ) |
39 |
38
|
oveq2d |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e +oo ) ) |
40 |
2 34
|
sge0xrcl |
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) e. RR* ) |
41 |
2 34
|
sge0nemnf |
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) =/= -oo ) |
42 |
|
xaddpnf1 |
|- ( ( ( sum^ ` ( k e. A |-> B ) ) e. RR* /\ ( sum^ ` ( k e. A |-> B ) ) =/= -oo ) -> ( ( sum^ ` ( k e. A |-> B ) ) +e +oo ) = +oo ) |
43 |
40 41 42
|
syl2anc |
|- ( ph -> ( ( sum^ ` ( k e. A |-> B ) ) +e +oo ) = +oo ) |
44 |
43
|
adantr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( ( sum^ ` ( k e. A |-> B ) ) +e +oo ) = +oo ) |
45 |
16
|
adantr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) e. RR* ) |
46 |
|
id |
|- ( ( sum^ ` ( k e. A |-> C ) ) = +oo -> ( sum^ ` ( k e. A |-> C ) ) = +oo ) |
47 |
46
|
eqcomd |
|- ( ( sum^ ` ( k e. A |-> C ) ) = +oo -> +oo = ( sum^ ` ( k e. A |-> C ) ) ) |
48 |
47
|
adantl |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> +oo = ( sum^ ` ( k e. A |-> C ) ) ) |
49 |
22 4
|
sselid |
|- ( ( ph /\ k e. A ) -> C e. RR* ) |
50 |
49 3
|
xadd0ge2 |
|- ( ( ph /\ k e. A ) -> C <_ ( B +e C ) ) |
51 |
1 2 4 15 50
|
sge0lempt |
|- ( ph -> ( sum^ ` ( k e. A |-> C ) ) <_ ( sum^ ` ( k e. A |-> ( B +e C ) ) ) ) |
52 |
51
|
adantr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> C ) ) <_ ( sum^ ` ( k e. A |-> ( B +e C ) ) ) ) |
53 |
48 52
|
eqbrtrd |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> +oo <_ ( sum^ ` ( k e. A |-> ( B +e C ) ) ) ) |
54 |
45 53
|
xrgepnfd |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = +oo ) |
55 |
54
|
eqcomd |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> +oo = ( sum^ ` ( k e. A |-> ( B +e C ) ) ) ) |
56 |
39 44 55
|
3eqtrrd |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) ) |
57 |
56
|
adantlr |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) ) |
58 |
|
simpl |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) ) |
59 |
|
simpr |
|- ( ( ph /\ -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) |
60 |
2 9
|
sge0repnf |
|- ( ph -> ( ( sum^ ` ( k e. A |-> C ) ) e. RR <-> -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) ) |
61 |
60
|
adantr |
|- ( ( ph /\ -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( ( sum^ ` ( k e. A |-> C ) ) e. RR <-> -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) ) |
62 |
59 61
|
mpbird |
|- ( ( ph /\ -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> C ) ) e. RR ) |
63 |
62
|
adantlr |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> C ) ) e. RR ) |
64 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> A e. V ) |
65 |
|
nfcv |
|- F/_ k sum^ |
66 |
|
nfmpt1 |
|- F/_ k ( k e. A |-> B ) |
67 |
65 66
|
nffv |
|- F/_ k ( sum^ ` ( k e. A |-> B ) ) |
68 |
|
nfcv |
|- F/_ k RR |
69 |
67 68
|
nfel |
|- F/ k ( sum^ ` ( k e. A |-> B ) ) e. RR |
70 |
1 69
|
nfan |
|- F/ k ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) |
71 |
|
nfv |
|- F/ k j e. A |
72 |
70 71
|
nfan |
|- F/ k ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ j e. A ) |
73 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ B |
74 |
73
|
nfel1 |
|- F/ k [_ j / k ]_ B e. ( 0 [,) +oo ) |
75 |
72 74
|
nfim |
|- F/ k ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ j e. A ) -> [_ j / k ]_ B e. ( 0 [,) +oo ) ) |
76 |
|
eleq1w |
|- ( k = j -> ( k e. A <-> j e. A ) ) |
77 |
76
|
anbi2d |
|- ( k = j -> ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ k e. A ) <-> ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ j e. A ) ) ) |
78 |
|
csbeq1a |
|- ( k = j -> B = [_ j / k ]_ B ) |
79 |
78
|
eleq1d |
|- ( k = j -> ( B e. ( 0 [,) +oo ) <-> [_ j / k ]_ B e. ( 0 [,) +oo ) ) ) |
80 |
77 79
|
imbi12d |
|- ( k = j -> ( ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ k e. A ) -> B e. ( 0 [,) +oo ) ) <-> ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ j e. A ) -> [_ j / k ]_ B e. ( 0 [,) +oo ) ) ) ) |
81 |
2
|
adantr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) -> A e. V ) |
82 |
3
|
adantlr |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
83 |
|
simpr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) -> ( sum^ ` ( k e. A |-> B ) ) e. RR ) |
84 |
70 81 82 83
|
sge0rernmpt |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ k e. A ) -> B e. ( 0 [,) +oo ) ) |
85 |
75 80 84
|
chvarfv |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ j e. A ) -> [_ j / k ]_ B e. ( 0 [,) +oo ) ) |
86 |
85
|
adantlr |
|- ( ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ j e. A ) -> [_ j / k ]_ B e. ( 0 [,) +oo ) ) |
87 |
|
nfmpt1 |
|- F/_ k ( k e. A |-> C ) |
88 |
65 87
|
nffv |
|- F/_ k ( sum^ ` ( k e. A |-> C ) ) |
89 |
88 68
|
nfel |
|- F/ k ( sum^ ` ( k e. A |-> C ) ) e. RR |
90 |
1 89
|
nfan |
|- F/ k ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) |
91 |
90 71
|
nfan |
|- F/ k ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ j e. A ) |
92 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ C |
93 |
92
|
nfel1 |
|- F/ k [_ j / k ]_ C e. ( 0 [,) +oo ) |
94 |
91 93
|
nfim |
|- F/ k ( ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ j e. A ) -> [_ j / k ]_ C e. ( 0 [,) +oo ) ) |
95 |
76
|
anbi2d |
|- ( k = j -> ( ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ k e. A ) <-> ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ j e. A ) ) ) |
96 |
|
csbeq1a |
|- ( k = j -> C = [_ j / k ]_ C ) |
97 |
96
|
eleq1d |
|- ( k = j -> ( C e. ( 0 [,) +oo ) <-> [_ j / k ]_ C e. ( 0 [,) +oo ) ) ) |
98 |
95 97
|
imbi12d |
|- ( k = j -> ( ( ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ k e. A ) -> C e. ( 0 [,) +oo ) ) <-> ( ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ j e. A ) -> [_ j / k ]_ C e. ( 0 [,) +oo ) ) ) ) |
99 |
2
|
adantr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> A e. V ) |
100 |
4
|
adantlr |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ k e. A ) -> C e. ( 0 [,] +oo ) ) |
101 |
|
simpr |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> ( sum^ ` ( k e. A |-> C ) ) e. RR ) |
102 |
90 99 100 101
|
sge0rernmpt |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ k e. A ) -> C e. ( 0 [,) +oo ) ) |
103 |
94 98 102
|
chvarfv |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ j e. A ) -> [_ j / k ]_ C e. ( 0 [,) +oo ) ) |
104 |
103
|
adantllr |
|- ( ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) /\ j e. A ) -> [_ j / k ]_ C e. ( 0 [,) +oo ) ) |
105 |
|
nfcv |
|- F/_ j B |
106 |
105 73 78
|
cbvmpt |
|- ( k e. A |-> B ) = ( j e. A |-> [_ j / k ]_ B ) |
107 |
106
|
fveq2i |
|- ( sum^ ` ( k e. A |-> B ) ) = ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) |
108 |
|
simplr |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> ( sum^ ` ( k e. A |-> B ) ) e. RR ) |
109 |
107 108
|
eqeltrrid |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) e. RR ) |
110 |
|
nfcv |
|- F/_ j C |
111 |
110 92 96
|
cbvmpt |
|- ( k e. A |-> C ) = ( j e. A |-> [_ j / k ]_ C ) |
112 |
111
|
fveq2i |
|- ( sum^ ` ( k e. A |-> C ) ) = ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) |
113 |
|
simpr |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> ( sum^ ` ( k e. A |-> C ) ) e. RR ) |
114 |
112 113
|
eqeltrrid |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) e. RR ) |
115 |
64 86 104 109 114
|
sge0xaddlem2 |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> ( sum^ ` ( j e. A |-> ( [_ j / k ]_ B +e [_ j / k ]_ C ) ) ) = ( ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) +e ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) ) ) |
116 |
|
nfcv |
|- F/_ j ( B +e C ) |
117 |
|
nfcv |
|- F/_ k +e |
118 |
73 117 92
|
nfov |
|- F/_ k ( [_ j / k ]_ B +e [_ j / k ]_ C ) |
119 |
78 96
|
oveq12d |
|- ( k = j -> ( B +e C ) = ( [_ j / k ]_ B +e [_ j / k ]_ C ) ) |
120 |
116 118 119
|
cbvmpt |
|- ( k e. A |-> ( B +e C ) ) = ( j e. A |-> ( [_ j / k ]_ B +e [_ j / k ]_ C ) ) |
121 |
120
|
fveq2i |
|- ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( sum^ ` ( j e. A |-> ( [_ j / k ]_ B +e [_ j / k ]_ C ) ) ) |
122 |
107 112
|
oveq12i |
|- ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) = ( ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) +e ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) ) |
123 |
121 122
|
eqeq12i |
|- ( ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) <-> ( sum^ ` ( j e. A |-> ( [_ j / k ]_ B +e [_ j / k ]_ C ) ) ) = ( ( sum^ ` ( j e. A |-> [_ j / k ]_ B ) ) +e ( sum^ ` ( j e. A |-> [_ j / k ]_ C ) ) ) ) |
124 |
115 123
|
sylibr |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ ( sum^ ` ( k e. A |-> C ) ) e. RR ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) ) |
125 |
58 63 124
|
syl2anc |
|- ( ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) /\ -. ( sum^ ` ( k e. A |-> C ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) ) |
126 |
57 125
|
pm2.61dan |
|- ( ( ph /\ ( sum^ ` ( k e. A |-> B ) ) e. RR ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) ) |
127 |
31 37 126
|
syl2anc |
|- ( ( ph /\ -. ( sum^ ` ( k e. A |-> B ) ) = +oo ) -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) ) |
128 |
30 127
|
pm2.61dan |
|- ( ph -> ( sum^ ` ( k e. A |-> ( B +e C ) ) ) = ( ( sum^ ` ( k e. A |-> B ) ) +e ( sum^ ` ( k e. A |-> C ) ) ) ) |