| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xadd0ge.a |
|- ( ph -> A e. RR* ) |
| 2 |
|
xadd0ge.b |
|- ( ph -> B e. ( 0 [,] +oo ) ) |
| 3 |
|
xaddrid |
|- ( A e. RR* -> ( A +e 0 ) = A ) |
| 4 |
1 3
|
syl |
|- ( ph -> ( A +e 0 ) = A ) |
| 5 |
4
|
eqcomd |
|- ( ph -> A = ( A +e 0 ) ) |
| 6 |
|
0xr |
|- 0 e. RR* |
| 7 |
6
|
a1i |
|- ( ph -> 0 e. RR* ) |
| 8 |
1 7
|
jca |
|- ( ph -> ( A e. RR* /\ 0 e. RR* ) ) |
| 9 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 10 |
9 2
|
sselid |
|- ( ph -> B e. RR* ) |
| 11 |
1 10
|
jca |
|- ( ph -> ( A e. RR* /\ B e. RR* ) ) |
| 12 |
8 11
|
jca |
|- ( ph -> ( ( A e. RR* /\ 0 e. RR* ) /\ ( A e. RR* /\ B e. RR* ) ) ) |
| 13 |
1
|
xrleidd |
|- ( ph -> A <_ A ) |
| 14 |
|
pnfxr |
|- +oo e. RR* |
| 15 |
14
|
a1i |
|- ( ph -> +oo e. RR* ) |
| 16 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ B e. ( 0 [,] +oo ) ) -> 0 <_ B ) |
| 17 |
7 15 2 16
|
syl3anc |
|- ( ph -> 0 <_ B ) |
| 18 |
13 17
|
jca |
|- ( ph -> ( A <_ A /\ 0 <_ B ) ) |
| 19 |
|
xle2add |
|- ( ( ( A e. RR* /\ 0 e. RR* ) /\ ( A e. RR* /\ B e. RR* ) ) -> ( ( A <_ A /\ 0 <_ B ) -> ( A +e 0 ) <_ ( A +e B ) ) ) |
| 20 |
12 18 19
|
sylc |
|- ( ph -> ( A +e 0 ) <_ ( A +e B ) ) |
| 21 |
5 20
|
eqbrtrd |
|- ( ph -> A <_ ( A +e B ) ) |