Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xadd0ge2.a | |- ( ph -> A e. RR* ) |
|
| xadd0ge2.b | |- ( ph -> B e. ( 0 [,] +oo ) ) |
||
| Assertion | xadd0ge2 | |- ( ph -> A <_ ( B +e A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xadd0ge2.a | |- ( ph -> A e. RR* ) |
|
| 2 | xadd0ge2.b | |- ( ph -> B e. ( 0 [,] +oo ) ) |
|
| 3 | 1 2 | xadd0ge | |- ( ph -> A <_ ( A +e B ) ) |
| 4 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 5 | 4 2 | sselid | |- ( ph -> B e. RR* ) |
| 6 | 1 5 | xaddcomd | |- ( ph -> ( A +e B ) = ( B +e A ) ) |
| 7 | 3 6 | breqtrd | |- ( ph -> A <_ ( B +e A ) ) |