Metamath Proof Explorer


Theorem nepnfltpnf

Description: An extended real that is not +oo is less than +oo . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses nepnfltpnf.1
|- ( ph -> A =/= +oo )
nepnfltpnf.2
|- ( ph -> A e. RR* )
Assertion nepnfltpnf
|- ( ph -> A < +oo )

Proof

Step Hyp Ref Expression
1 nepnfltpnf.1
 |-  ( ph -> A =/= +oo )
2 nepnfltpnf.2
 |-  ( ph -> A e. RR* )
3 1 neneqd
 |-  ( ph -> -. A = +oo )
4 nltpnft
 |-  ( A e. RR* -> ( A = +oo <-> -. A < +oo ) )
5 2 4 syl
 |-  ( ph -> ( A = +oo <-> -. A < +oo ) )
6 3 5 mtbid
 |-  ( ph -> -. -. A < +oo )
7 notnotb
 |-  ( A < +oo <-> -. -. A < +oo )
8 6 7 sylibr
 |-  ( ph -> A < +oo )