Description: An extended real that is not +oo is less than +oo . (Contributed by Glauco Siliprandi, 11-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nepnfltpnf.1 | |- ( ph -> A =/= +oo ) |
|
| nepnfltpnf.2 | |- ( ph -> A e. RR* ) |
||
| Assertion | nepnfltpnf | |- ( ph -> A < +oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nepnfltpnf.1 | |- ( ph -> A =/= +oo ) |
|
| 2 | nepnfltpnf.2 | |- ( ph -> A e. RR* ) |
|
| 3 | 1 | neneqd | |- ( ph -> -. A = +oo ) |
| 4 | nltpnft | |- ( A e. RR* -> ( A = +oo <-> -. A < +oo ) ) |
|
| 5 | 2 4 | syl | |- ( ph -> ( A = +oo <-> -. A < +oo ) ) |
| 6 | 3 5 | mtbid | |- ( ph -> -. -. A < +oo ) |
| 7 | notnotb | |- ( A < +oo <-> -. -. A < +oo ) |
|
| 8 | 6 7 | sylibr | |- ( ph -> A < +oo ) |