Metamath Proof Explorer


Theorem nepnfltpnf

Description: An extended real that is not +oo is less than +oo . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses nepnfltpnf.1 φ A +∞
nepnfltpnf.2 φ A *
Assertion nepnfltpnf φ A < +∞

Proof

Step Hyp Ref Expression
1 nepnfltpnf.1 φ A +∞
2 nepnfltpnf.2 φ A *
3 1 neneqd φ ¬ A = +∞
4 nltpnft A * A = +∞ ¬ A < +∞
5 2 4 syl φ A = +∞ ¬ A < +∞
6 3 5 mtbid φ ¬ ¬ A < +∞
7 notnotb A < +∞ ¬ ¬ A < +∞
8 6 7 sylibr φ A < +∞