Metamath Proof Explorer


Theorem xadd0ge2

Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xadd0ge2.a φA*
xadd0ge2.b φB0+∞
Assertion xadd0ge2 φAB+𝑒A

Proof

Step Hyp Ref Expression
1 xadd0ge2.a φA*
2 xadd0ge2.b φB0+∞
3 1 2 xadd0ge φAA+𝑒B
4 iccssxr 0+∞*
5 4 2 sselid φB*
6 1 5 xaddcomd φA+𝑒B=B+𝑒A
7 3 6 breqtrd φAB+𝑒A